

Phase 2 Environmental Site Assessment, Smelter Site, Additional Investigations

Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

> Prepared by: ENVIRON Australia Pty Ltd

> > Date: May 2015

Project Number: AS130383

Prepare	d by:			Authoris	ed by:		
Name:	Kirsty Greenfield			Name:	Fiona Robinson		
Title:	Environmental Scier	ntist		Title:	Manager - Hunter		
Phone:	02 4962 5444			Phone:	02 4962 5444		
Email:	kgreenfield@enviror	ncorp.com		Email:	frobinson@environ	corp.com	
Signature:	KGreenfield	Date:	16/1/15	Signature:	forfabrion	Date:	16/1/15

This document is issued in confidence to Hydro Australia Pty Ltd for the purposes of a Phase 2 Environmental Site Assessment. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer
AS130383_Hydro_Phase 2	13 October 2014	Draft 1	K Greenfield	F Robinson
AS130383_Hydro_Phase 2	16 January 2015	Final	K Greenfield	F Robinson
AS130383_Hydro_Phase 2_V1	16 January 2015	Final	K Greenfield	F Robinson

VERSION CONTROL RECORD

Contents

		Page
1	Introduction	5
1.1	Background	5
1.2	Objectives and Scope of Work	5
1.3	Project Background	5
1.4	Limitations	6
2	Site Identification	7
2.1	Site Location	7
3	Site History	8
3.1	Zoning	8
3.1.1	Current	8
3.1.2	Proposed Future Land Use	8
3.2	Landuse	9
3.3	Licences, Permits and Approvals	10
3.3.1	Planning Approvals	10
3.3.2	Environmental Protection Licence	11
3.4	Previous ENVIRON Investigations	11
3.4.1	Stage 1 of the Phase 2 ESA	11
3.4.2	Capped Waste Stockpile	13
3.4.3	Clay Borrow Pit	14
3.4.4	Ecological Risk Assessment	14
3.4.5	Health Risk Assessment	14
3.4.6	Phase 1 ESA	14
4	Site Condition and Surrounding Environment	15
4.1	Topography	15
4.2	Boundary Conditions	15
4.3	Visible Signs of Contamination	15
4.4	Visible Signs of Plant Stress	16
4.5	Presence of Drums, Wastes and Fill Material	16
4.6	Odours	16
4.7	Conditions of Buildings and Roads	17
4.8	Quality of Surface Water	17
4.9	Flood Potential	17
4.10	Local Sensitive Environment	17
5	Geology and Hydrogeology	19
5.1	Geology	19
5.2	Location and Extent of Fill	19
5.3	Borehole Logs	19
5.4	On-site Wells	20
5.5	Depth to Groundwater Table	20
5.6	Direction and Rate of Groundwater Flow	21
5.7	Direction of Surface Water Runoff	21

5.8	Background Water Quality	21
5.9	Preferential Water Courses	21
5.10	Summary of Local Meteorology	21
6	Sampling, Analysis and Quality Plan	23
6.1	Preparation of Sampling, Analysis and Quality Plan	23
6.2	Data Quality Objectives and Data Quality Indicators	27
6.3	Project Fieldwork Phase	27
6.3.1	Soil Sampling	27
6.3.2	Groundwater Monitoring Well Installation and Sampling	28
7	Quality Assurance and Quality Control	29
8	Basis for Assessment Criteria	30
8.1	Soil	30
8.2	Groundwater	33
8.2.1	Potential Beneficial Uses	34
8.2.2	Appropriate Criteria for Groundwater	34
9	Results	37
9.1	Fluoride in Soil	37
9.2	AEC 2 Anode Waste Pile	38
9.2.1	Soil	38
9.2.2	Groundwater	38
9.3	AEC 3 Refuelling Area	39
9.3.1	Soil	39
9.3.2	Groundwater	39
9.4	AEC 4 Diesel Spray Area	39
9.4.1	Soil	39
9.4.2	Groundwater	40
9.5	AEC 8 Carbon Plant	40
9.5.1	Soil	40
9.5.2	Groundwater	41
9.6	PAEC 26 Bake Furnace Scrubber	41
9.6.1	Soil	41
9.6.2	Groundwater	42
9.7	PAEC 28 Playing Fields	42
9.7.1	Soil	42
9.7.2	Groundwater	42
9.8	PAEC 29 Area East of Playing Fields	43
9.8.1	Soil	43
9.8.2	Groundwater	43
9.9	PAEC 31 Storage Area West of Pot Line 3	43
9.9.1	Soil	43
9.10	Site-Wide Assessment of Groundwater	43
10	Site Characterisation	45
10.1	Conceptual Site Model	45
10.1.1	Contamination Sources	45

Conclusions and Recommendations	54
Remediation	51
Fluoride Impacts in Groundwater	51
Further Investigations	51
Exposure Pathways	47
Human and Ecological Receptors	46
	Fluoride Impacts in Groundwater

List of Figures

Figure 1:	Site Location Plan
Figure 2:	Smelter Site Boundary
Figure 3:	Smelter Layout
Figure 4:	AEC 2 Anode Waste Pile
Figure 5:	AEC 3 Refuelling Area
Figure 6:	AEC 4 Diesel Spray Area
Figure 7:	AEC 8 Carbon Plant
Figure 8:	AEC 11 Washdown Bay
Figure 9:	AEC12 Pot Lines and PAEC 25 Dry Scrubbers
Figure 10:	PAEC 26 Bake Furnace Scrubber
Figure 11:	PAEC 28 Playing Fields
Figure 12:	PAEC 29 Area east of Playing Fields
Figure 13:	PAEC 31 Storage Area west of Pot Line 3

List of Tables

Table 5.1:	Subsurface Conditions beneath the Carbon Plant
Table 6.1:	Sampling Program for PAECs
Table 6.2:	Laboratory Analysis for Groundwater Samples
Table 8.1:	Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels
Table 8.2:	Soil Assessment Criteria for Vapour Intrusion – HSL D (mg/kg) - Sand
Table 8.3:	ESLs and Management Limits for Petroleum Hydrocarbons in Soil
Table 8.4:	Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)
Table 8.5:	Groundwater Assessment Criteria (µg/L)
Table 10.1	Summary of Site Soil Contamination
Table 10.2	Exposure Pathways Assessment
Table 10.3:	Recommended Remediation
Table LR1:	Soil Analytical Results for AEC2 Anode Waste Pile
Table LR2:	Soil Analytical Results for AEC4 Diesel Spray Area
Table LR3:	Soil Analytical Results for AEC8 Carbon Plant
Table LR4:	Soil Analytical Results for AEC11 Washdown Bay
Table LR5:	Soil Analytical Results for AEC12 and AEC25 Pot Lines and Dry Scrubbers
Table LR6:	Soil Analytical Results for AEC26 Bake Furnace Scrubber
Table LR7:	Soil Analytical Results for AEC28 Playing Fields
Table LR8:	Soil Analytical Results for AEC29 Area east of Playing Fields

ENVIRON

3

Table LR9:	Soil Analytical Results for AEC31 Storage Area west of Pot Line
Table LR10:	Groundwater Analytical Results for all AECs
Table LR11:	Groundwater Results for VOCs and SVOCs
Table LR12:	Soil QA/QC Results
Table LR13:	Groundwater QA/QC Results

List of Appendices

Appendix A:	2012 Soil Results
Appendix B:	Soil Analysis and Quality Plan (SAQP)
Appendix C:	NEPM (2013) EIL Calculation Spreadsheets
Appendix D:	Field Methodologies
Appendix E:	QA/QC Assessment
Appendix F:	Borehole, Test Pit and Hand Auger Logs
Appendix G:	Laboratory Results for Soil
Appendix H:	Laboratory Results for Groundwater
Appendix I:	Groundwater Field Sheets

Acronyms and Abbreviations

ACM	Asbestos Containing Materials
AEC	Area of Environmental Concern
AHD	Australian Height Datum
ALS	Australian Laboratory Services
ASET	
	Australian Safer Environment and Technology Pty Ltd. (Laboratory)
ANZECC	Australian and New Zealand Environment and Conservation Council
B(a)P	Benzo(a)pyrene
BGS	Below Ground Surface
BTEX	Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)
CN	Cyanide (total or free)
СТ	Certificate of Title
DP	Deposited Plan
DQO	Data Quality Objective
EIL	Ecological Investigation Level
EPA	Environment Protection Authority
	•
ESA	Environmental Site Assessment
Ha	Hectare
km	Kilometres
LOR	Limit of Reporting
m	Metres
MAH	Monocyclic Aromatic Hydrocarbons
Mercury	Inorganic mercury unless noted otherwise
Metals	As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:
	Zinc, Hg: Mercury, Se: Selenium
mg/kg	Milligrams per Kilogram
mg/L	Milligrams per Litre
m BGL	Metres below ground level
mg/L	Micrograms per Litre
MW	Monitoring well
NATA	National Association of Testing Authorities
NC	Not Calculated
ND	Not Detected
NEHF	National Environmental Health Forum
NEPM	National Environment Protection Measure
NHMRC	National Health and Medical Research Council
n	Number of Samples
OCPs	Organochlorine Pesticides
OH&S	Occupational Health & Safety
OPPs	Organophosphorus Pesticides
PAEC	Potential Area of Environmental Concern
-	
PAHs	Polycyclic Aromatic Hydrocarbons
PCBs	Polychlorinated Biphenyls
PID	Photoionisation Detector
PQL	Practical Quantitation Limit
рН	a measure of acidity, hydrogen ion activity
QA/QC	Quality Assurance/Quality Control
RPD	Relative Percent Difference
SILs	Soil Investigation Levels
SMF	Synthetic Mineral Fibre
SVOCs	Semi Volatile Organic Compounds
TPHs	Total Petroleum Hydrocarbons
UCL	Upper Confidence Limit
VENM	
	Virgin Excavated Natural Material
VOCs	Volatile Organic Compounds
µg/L	Micrograms per Litre
- O	n tables is "not calculated", "no criteria" or "not applicable"

Executive Summary

ENVIRON Australia Pty Limited (ENVIRON) was commissioned by Hydro Aluminium Kurri Kurri Pty Limited (Hydro) to complete Stage 2 of a Phase 2 Environmental Site Assessment (ESA) at the Hydro Kurri Kurri Aluminium Smelter located of Hart Road, Loxford, New South Wales. The site incorporates 60ha of Smelter Site and approximately 2,000ha of surrounding buffer land and is hereinafter referred to as 'the site'. The initial Stage 1 phase of work was completed in November 2012. The objective of the Stage 2 investigations was to build upon the results of the Stage 1 in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for the Stage 2 investigations includes the following:

- Review of previous investigations and identification of data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP);
- Soil sampling at five areas of environmental concern (AECs) identified from the Stage 1 investigations and five new potential areas of environmental concern (PAECs);
- The installation of seven new groundwater wells at three of the AECs;
- Groundwater sampling of the seven new and 17 existing wells;
- Laboratory analysis for soil and groundwater samples;
- · Assessment of laboratory results against site criteria;
- Refinement of the conceptual site model (CSM);
- · Identification of additional site investigation works to refine the CSM; and
- Assessment of areas requiring remediation.

The CSM assumed a future commercial/industrial site landuse, and considered off-site receptors in the down-hydraulic gradient area. The following complete source-pathway-receptor linkages were identified in the CSM:

- Inhalation of dust generated from surface soil impacts by current and future on-site commercial/industrial adult employees;
- Direct contact with impacted soil and groundwater by current and future on-site intrusive maintenance workers;
- Direct contact with impacted sediment by current and future on-site commercial/industrial employees.

In order to further refine the CSM, a number of targeted investigations are required to be performed at the West Surge Pond, the Sub-Stations and the Area East of the Clay Borrow Pit.

Based upon the source-pathway-receptor linkages identified in the refined CSM, surface soil and sediment remediation at the following AECs is required:

- Capped Waste Stockpile: This AEC has been assessed separately to this investigation;
- Anode Waste Pile: PAH contamination in surface soils to 0.2m bgs. Delineation and remediation of PAH hot spot at MW103;
- Diesel Spray Area: PAH contamination of fill material at 0.4m to 0.6m bgs. Delineation and remediation required;
- Drainage Lines: PAH contamination of sediments in drainage lines around the Capped Waste Stockpile and the Anode Waste Pile;
- East Surge Pond: PAH contamination of sediments;
- Carbon Plant: PAH contamination of shallow soils to 0.4m bgs in grassed areas and gardens beds at the western end of the Carbon Plant;
- Bake Furnace Scrubber: PAH contamination in shallow soils to 0.3m bgs in grassed areas below the scrubber duct work. Delineation of remediation of PAH hot spot at HA115; and
- Area east of the Playing Fields: Buried wastes to be remediated for aesthetic reasons. Delineation and remediation of PAH hot spot identified in south east corner at TP117.

Vertical delineation of the soil contamination at each AEC was completed as part of the Stage 2 investigations. The soil contamination identified is PAH (primarily benzo(a)pyrene) contamination in fill, which has not extended into the underlying alluvial sands and has not impacted groundwater. Lateral delineation of soil contamination has been completed to the extent practicable at this time given buildings, stockpiles, roads and services limit potential sampling locations. Lateral delineation of soil contamination and hot spots will be required at some AECs (e.g. Anode Waste Pile, Diesel Spray Area) prior to remediation.

ENVIRON recommends the preparation of a Remedial Action Plan (RAP) for the Smelter Site to develop remediation and validation plans for each of the seven AECs identified above. The Remediation Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

ENVIRON recommends a health risk assessment be completed to derive site-specific criterion for fluoride for maintenance and construction employees and assess the requirement for remediation of fluoride in groundwater beneath the Smelter Site.

Hydro has separately engaged an EPA-accredited Site Auditor to assess the appropriateness of the Remedial Action Plan and to assess if the site can be made suitable for the proposed landuse by implementation of the Remedial Action Plan. Following the completion of the remediation, the Site Auditor will provide a Site Audit Statement certifying that the site is suitable for the proposed use.

1 Introduction

1.1 Background

This report presents the findings of Stage 2 of a Phase 2 Environmental Site Assessment (ESA) which was performed at the former Hydro Kurri Kurri Aluminium Smelter located off Hart Road, Loxford, New South Wales (NSW). The site incorporates 60ha of Smelter Site and 2,000ha of surrounding buffer land and is hereinafter referred to as 'the site'. This report relates to the part of the site used for Smelter operations and ancillary land use in the immediate vicinity of the operations, herein referred to as 'the Smelter site' and defined as shown on Figure 2. Hydro owned land outside of the Smelter Site has been investigated under separate cover.

The work has been performed at the request of Mr Richard Brown, Hydro Aluminium Kurri Kurri Pty Limited (the 'Client') (Hydro).

1.2 Objectives and Scope of Work

The objective of Stage 2 of the Phase 2 ESA investigations is to build upon the results of Stage 1 completed in 2012, in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for Stage 2 investigations includes the following:

- Review of the Stage 1 works, any subsequent information and identification of remaining data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP);
- Soil sampling and the installation of new groundwater wells;
- Groundwater sampling of new and existing wells;
- Laboratory analysis for soil and groundwater samples;
- Assessment of laboratory results against site criteria;
- Assessment of data quality and reliability;
- Refinement of the conceptual site model; and
- Assessment of areas requiring remediation.

1.3 Project Background

Hydro suspended operations at the Kurri Kurri Smelter in 2012 and following a two year period of care and maintenance, closure was announced in May 2014. Environmental investigations are being undertaken to understand remediation requirements at the site and the potential for land divestment.

The Kurri Kurri Smelter produced 180,000 tonnes of aluminium metal per annum. The smelter commenced production in 1969 with a single pot line. A second pot line was commissioned in 1979, and a third added in 1985. In 2002, Hydro undertook an upgrade program, which increased production capacity to 180,000 tonnes. The smelter is surrounded by a 2,000ha buffer zone, part of which is used for agricultural purposes.

1.4 Limitations

The scope of the Environmental Site Assessment was based on ENVIRON's proposal dated 2 June 2014.

Specific assumptions and limitations identified by ENVIRON as being relevant are set out in the report. The methodology and sources of information used by ENVIRON are outlined in our scope of work. ENVIRON has made no independent verification of this information beyond the agreed scope of works and assumes no responsibility for any inaccuracies or omissions made by others.

This report should be read in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose.

2 Site Identification

2.1 Site Location

The site is located approximately 30km west of the town of Newcastle and 150km north of Sydney in New South Wales, Australia.

The site address is:

Hart Road Loxford New South Wales 2327 AUSTRALIA

The site includes a 60ha plant area ('the Smelter Site'), which is described by 10 different allotments, Lots 318, 319, 411, 412, 413, 414, 415, 769, 776 in DP 755231, and Lot 3 in DP 456769; and a 2,000ha land parcel, which includes a Buffer Zone around the Smelter Site and land owned by Hydro that is outside the Buffer Zone. The 2,000ha land parcel is described by approximately 75 different allotments.

This Phase 2 ESA is focused on the smelter site only. A location plan of the smelter site is provided in **Figure 1**. The boundary of the smelter site is shown in **Figure 2**. The layout of the smelter is shown in **Figure 3**.

3 Site History

3.1 General

The Smelter was built on previously undeveloped agricultural land. A Buffer Zone of land was purchased around the planned facility as required in the planning approval for the smelter.

The site was developed in 1969 by Alcan Australia Ltd., later Capral Aluminium, with potlines commissioned in 1969 (Line 1 – 120 cells; expanded in 1973 to 50,000 tonnes per annum), in 1979 (Line 2 – 120 cells), and in 1985 (Line 3 – 120 cells) for a final capacity of 170,000 tonnes per annum.

The site was purchased by VAW Aluminium in 2000, and became part of Hydro with the purchase of VAW Aluminium in 2001.

3.2 Zoning

3.2.1 Current

The site is currently zoned 'RU2 Rural Landscape' under the Cessnock Local Environmental Plan (LEP) 2011. The objectives of the RU2 Rural Landscape zoning are:

- To encourage sustainable primary industry production by maintaining and enhancing the natural resource base;
- To maintain the rural landscape character of the land;
- To provide for a range of compatible land uses, including extensive agriculture;
- To enable other forms of development that are associated with rural activity and require an isolated location or support tourism and recreation; and
- To ensure that the type and intensity of development is appropriate in relation to the rural capability and suitability of the land, the preservation of the agricultural, mineral and extractive production potential of the land, the rural environment (including scenic resources) and the costs of providing services and amenities.

It is noted the current site use is permissible under existing use rights as established within the NSW *Environmental Planning and Assessment Act 1979.*

3.2.2 Proposed Future Land Use

A Rezoning Masterplan (dwp Suters, December 2013) was developed in late 2013 which identifies potential future land uses at the smelter site and buffer zone. The potential future land use at the Smelter site is for the majority of the site to be rezoned General Industrial (IN1), a portion in the north-western corner to the rezoned Heavy Industrial (IN3) and for the remainder to be rezoned Environmental Conservation (E2).

The area to be rezoned General Industrial includes the footprint of the area that has been developed for the Smelter. The area to be rezoned Heavy Industrial includes the Clay Borrow Pit and access road to the west of the Smelter. The area to be rezoned

Environmental Conservation includes bushland immediately surrounding the Smelter footprint that has remained undeveloped aside from access tracks.

An application for rezoning of the land consistent with these uses is being prepared by others.

3.3 Landuse

The smelter site includes a plant area for the aluminium smelter, as shown in **Figure 3**. The majority of the smelter site is developed with buildings and associated hardstand areas. Areas adjacent to the buildings are predominately sealed with concrete or bitumen (car parks, roadways and turning areas). Established garden beds and grassed areas surround some buildings on the eastern portion of the Smelter Site.

The smelter site is accessed through one main entrance located on the southern boundary of the plant off Hart Road. The Smelter Site is currently maintained by a small team of Hydro employees.

The Smelter Site was originally developed in 1969 with the construction of one pot line and associated infrastructure. The plant was expanded in 1973 and again in1985 with the addition of two pot lines and the expansion of other infrastructure. The Smelter Site layout, as shown in **Figure 3**, is described as follows:

- Pot Lines 1, 2 and 3 are located on the western portion of the smelter. Alumina and cryolite were placed within pots and an electrical current applied. Molten aluminium was siphoned from each pot and taken to the Cast House;
- The Cast House is located immediately east of Pot Line 1 near the main entrance. The Cast House produced cast aluminium products to product specifications often including the addition of alloys. The Cast Houses utilised chlorine gas to avoid oxidation during the casting process. The gas was captured when the casting chamber is filled. Wastes from the Cast House included dross and swarf, which have a high aluminium content and were sent for recycling off-site;
- The Carbon Plant is located near the northern plant boundary to the east of the
 potlines. The Carbon Plant produced anodes from a mixture of coke, pitch and
 recycled anode butts to produce a green anode. This green anode was then baked
 within a bake furnace prior to the addition of a cast iron rod, and dispatched to the
 Pot Rooms. The bake furnace was gas fired however it was previously oil heated.
 Ancillary operations associated with the Carbon Plant include a liquid pitch tank,
 petroleum coke storage, the bake furnace scrubber, the rodding building, rodding mix
 storage building, baked anode storage; and
- A pot reconditioning area was located to the south of Pot Line 1. The pot reconditioning area contains one large building where pots were reconditioned for reuse.

Infrastructure and ancillary structures located within the Smelter Site include:

- A transformer yard and substation are located in the north western corner of the Smelter Site;
- Stormwater on the plant's paved areas is directed via conduits to either the West Surge Pond, which is located on the western boundary of the smelter or the East Surge Pond, which is located on the eastern boundary of the smelter. Surface water runoff from the carpark and administration areas is directed to the South Surge Pond. All ponds overflow to the North Dam, located to the north of the Carbon Plant;
- Smelter wastes including Spent Potlining was stockpiled on a low lying area of the smelter near the eastern plant boundary between 1969 and the early 1990s. The smelter waste mound (known as the Capped Waste Stockpile) was capped with clay in 1995. Since this time smelter wastes have been stockpiled separately or recycled. Spent potlinings are now stored in purpose-built sheds, of which there are ten located to the south of the Capped Waste Stockpile;
- A maintenance compound is located in the centre of the smelter, south of the Carbon Plant. The compound is used for maintenance activities as well as storage of equipment and spare parts;
- A diesel refuelling area is located in the centre of the smelter. The diesel refuelling area contains one above ground storage tank (AST) and a wash bay;
- A diesel spray area is located at the rear of the Carbon Plant on the northern smelter boundary, which was used to treat rust coatings from cathode rods prior to reuse; and
- Offices, a security gate house, canteen, two playing fields and a gym are located within the smelter site.
- Storage area west of Pot Lines
- The Clay Borrow Pit
- And vegetated area forming part of the buffer zone for the site

The infrastructure and ancillary structures described above are included on **Figure 3**. It is noted that the Smelter Site is currently in care and maintenance following closure of the site operations in May 2014.

3.4 Licences, Permits and Approvals

3.4.1 Planning Approvals

Three planning approvals have been granted at the site throughout the period of operations as follows:

 5th November 1980: The Minister for Environment and Planning granted development approval for the proposed expansion of the Kurri Kurri Smelter by construction of a third pot line and associated production and support facilities. The approval includes 51 consent conditions relating to the upgrade and the operations at the site, including assessment of smelter emissions, monitoring of air, vegetation, native vegetation, vineyards, other cultivated vegetation, forage, rainwater, surface water, groundwater, water at Wentworth Swamp, native and feral animals, farm animals, bees and ecosystem monitoring.

- 11th January 1993: The Council of the City of Cessnock granted approval for the upgrade of waste storage facilities including capping of the Alcan Mound (Capped Waste Stockpile) and construction of above ground sheds for future storage of SPL. There are 37 consent conditions relating to the capping of the Alcan Mound (Capped Waste Stockpile) and construction of the storage sheds.
- 21st August 2002: The Minister for Planning granted approval for the installation of a Greenmix Plant scrubber, upgrade of the Anode Plant and upgrades to Pot Line 1. A series of consent conditions were included on this approval, including environmental performance requirements for air quality, dust emissions, discharge limits and water quality impacts.

3.4.2 Environmental Protection Licence

The Smelter Site operates under Licence EPL 1548 which licenced the carrying out of aluminium production >10,000 T and metal waste generation of >100 T generated or stored during the operation of the smelter. In August 2014, a variation was made to the licence and the scheduled activity under the licence is currently for waste storage.

A licence transfer was approved on 25 August 2000. Licence variations have been issued on 1 February 2002, 27 October 2004, 16 June 2011, 30 March 2012 and 18 August 2014. A search of the EPL on the Office of Environment and Heritage website indicates that non-compliance load based licencing data was received in annual returns from 2004 (total solid particles), 2008 (nitrogen oxides) and 2013 (clerical error).

3.5 Previous ENVIRON Investigations

ENVIRON has completed a number of investigations at the Kurri Kurri Aluminium Smelter since operations were suspended in 2012. These investigations included a historical review of the Smelter Site. Investigations completed by ENVIRON that are relevant to this investigation are outlined below.

3.5.1 Stage 1 of the Phase 2 ESA

ENVIRON completed Stage 1 of the staged Phase 2 ESA in 2012. Stage 1 included the following documents:

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter'

Stage 1 involved the following tasks:

• A desktop study, including a review of historical information and background data and a site walkover;

- The identification of 20 potential areas of concern and five potential contaminants of concern relating to the production of aluminium and the ancillary operations;
- The development of a SAQP to assess the potential areas and chemicals of concern;
- Field investigations, including the drilling of 31 boreholes, installation of 21 groundwater monitoring wells, collection of 45 surface soil samples, 14 sediment samples and 28 groundwater samples;
- Analysis of soil, groundwater and sediment samples for a range of potential contaminants of concern;
- The development of a conceptual site model including sources of contamination, receptors and pathways between the sources and receptors; and
- Recommendations for further investigations.

Note that these results are compared against the most relevant guidelines available in 2012, as follows:

- NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition);
- NSW EPA (1994) Guidelines for Assessing Service Station Sites
- NEPC (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM).

As the NEPM (1999) guidelines were updated in 2013, the 2012 soil results were reassessed using the NEPM (2013) guidelines as part of this current investigation. Soil results from the 2012 investigation for all AECs compared against NEPM (2013) are included in **Appendix A**.

The Phase 2 ESA identified ten areas of concern that require further evaluation, as follows:

- AEC 1: Capped Waste Stockpile soil and groundwater
- AEC 2: Anode Waste Pile soil
- AEC 3: Refuelling Area groundwater
- AEC 4: Diesel Spray Area soil
- AEC 6: East Surge Pond sediments
- AEC 8 Carbon Plant (western end only) soil
- AEC 11: Washdown Bay soil
- AEC12: Pot Lines soil
- AEC15: West Surge Pond sediments

• Groundwater beneath the Smelter Site.

3.5.2 Capped Waste Stockpile

Following the Phase 2 ESA, the Capped Waste Stockpile was notified as potentially contaminated land to the New South Wales Environment Protection Authority (EPA) under Section 60 of the Contaminated Land Management Act 1997. In response, the EPA requested further information regarding the contamination status of the notified area. ENVIRON completed an Environmental Site Assessment on the notified area in 2013, which included the following tasks:

- Review and collation of relevant historical information pertaining to the Capped Waste Stockpile and the surrounding leachate impact area;
- Field sampling of 14 groundwater monitoring wells;
- Completion of a pumping test to assess aquifer behaviour;
- Water quality sampling of 14 wells following pumping to assess variations in response to changes in the aquifer; and
- Completion of a report identifying known information, data gaps and recommendations for further investigations to address the data gaps.

The recommended further investigations were undertaken, including a Preliminary Screening Level human health risk assessment to identify guidelines for fluoride in soil and water at the site for human health; a Tier 2 ecological risk assessment to assess impacted from leachate migration on the local ecology; delineation of the plume using a combination of existing data and further field investigations and commencement of a quarterly monitoring regime to monitor the leachate plume.

The following documents were prepared for the Capped Waste Stockpile, noting the groundwater monitoring is currently on-going:

- ENVIRON (12 August 2012) 'Section 60 Notification Supporting Information'
- ENVIRON (13 December 2012) 'Environmental Site Assessment, Alcan Mound, Kurri Kurri Aluminium Smelter'
- ENVIRON (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter'
- ENVIRON (2 April 2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- ENVIRON (11 October 2013) 'Plume Delineation Report, Alcan Mound'

As the Capped Waste Stockpile is being assessed separately, it will not be included in this report.

3.5.3 Clay Borrow Pit

The Clay Borrow Pit was assessed as an AEC in the 2012 Phase 2 ESA. Historical records indicate the Clay Borrow Pit was the source of clay materials for capping of the Capped Waste Stockpile located on the eastern side of the Smelter Site and undertaken in the 1990's. The resultant void was later filled with inert materials from the Smelter Site primarily comprising bake furnace refractory, concrete and asphalt. Filling has reinstated the excavation to ground level. Subsequent filling has resulted in above ground stockpiling of these smelter materials in this area.

Soil samples were analysed for hydrocarbons, heavy metals, fluoride, and a range of semivolatile hydrocarbon including PAHs, pesticide, and chlorinated hydrocarbons. Groundwater samples were also analysed for hydrocarbons, heavy metals, fluoride, cyanide, and a range of semi-volatile hydrocarbon including PAHs, pesticide, and chlorinated hydrocarbons.

Sampling of the soil matrix identified slightly elevated fluoride concentrations but other potential contaminants were either below detectable limits or below guideline concentrations. However, the presence of fill represents an impact on visual amenity and safety risk to the proposed future industrial use of the property.

Evaluation of groundwater quality from within the in-filled borrow pit (MW05) found elevated concentrations of fluoride (15,000 μ g/L). The fluoride concentration, compared to a background concentration of 1000 μ g/L in MW06, is considered to be elevated.

Remediation of the Clay Borrow Pit is required to remove the aesthetic impact from the presence of these materials and to mitigate possible impacts to groundwater. ENVIRON completed a Remedial Action Work Plan (July 2014) for this Clay Borrow Pit Area.

3.5.4 Ecological Risk Assessment

A Tier 2 Ecological Risk Assessment was completed in March 2013 (2013a) as there are no ecological assessment guidelines in Australia for fluoride and aluminium. The ecological risk assessment included an assessment of surface water quality at sites upstream and downstream of the Smelter Site in relation to fluoride and aluminium. The ecological risk assessment identified that the fluoride and aluminium concentrations present at the Capped Waste Stockpile have not impacted on the aquatic species at the receptor point at Swamp Creek.

3.5.5 Health Risk Assessment

A Health Risk Assessment was completed in April 2013 (2013b) as there are no human health assessment guidelines in Australia for fluoride and aluminium. The human health risk assessment allowed for the development of site-specific preliminary guidelines for fluoride and aluminium concentrations in soils, groundwater and surface water at the Smelter Site. The site-specific preliminary guidelines have been used as part of this investigation and are outlined in **Sections 8.1** and **8.2**.

3.5.6 Phase 1 ESA

A Phase 1 ESA was completed in October 2013 (2013c) to identify any potential areas of concern that were not identified in the high level review completed as part of the 2012 Phase 2 ESA. The Phase 1 ESA included the following tasks:

- A review of historical reports relating to land use and operations at the Smelter Site and Buffer Zone to assess the potential for soil and groundwater or surface water contamination arising from historical and current uses;
- A review of published geological, hydrogeological and hydrological data associated with the Smelter Site and Buffer Zone to establish the environmental setting and sensitivity;
- Detailed review of historical aerial photographs from 1951 (earliest available aerial photo), 1957, 1961, 1966, 1975, 1978, 1987, 1994, 2001, 2006 and 2013;
- Detailed site walkover;
- Interview with Hydro Environmental Manager Mr Kerry McNaughton; and
- Review of previous investigations undertaken by ENVIRON and others.

An Environmental Issues Register was developed for both the Smelter Site and the Buffer Zone, detailing the development on each deposited plan and potential environmental issues relating to the development. The Phase 1 ESA did not identify additional issues as the Smelter Site and therefore the AECs listed in **Section 3.4.1** were recorded on the Environmental Issues Register.

4 Site Condition and Surrounding Environment

4.1 Topography

The Smelter Site is located between low residual hills to the west and low lying swampy land to the north and east. Low lying areas were filled to create a flat, elevated platform at approximately 14m AHD for construction. The Smelter Site is relatively flat with a gentle slope from west to east, from the plant area towards the surrounding water courses.

Surrounding the Smelter Site the landforms in the north and east comprises low-lying swamps, with many surface water drainage ponds and creeks, interspersed with topographical rises comprising residual soils. In the south and west, the landform is predominantly residual hills with gully formations draining to the north and east.

4.2 Boundary Conditions

The boundary of the Smelter Site is shown in **Figure 2**. The western, northern and southern boundaries are identifiable by roads or tracks, including the recently completed Hunter Expressway on the southern boundary of the Smelter Site. The majority of the eastern boundary is within bushland and is not easily identifiable on the ground.

The smelter plant within the Smelter Site is fully fenced. It is evident along the northern and eastern fenceline that the smelter is on higher ground than the surrounding Buffer Zone, indicating this area has been filled to create a level platform for the Smelter plant.

4.3 Visible Signs of Contamination

During site visits conducted by ENVIRON on 6 and 15 May 2014, visible signs of contamination were noted at the following areas:

- In the garden bed adjacent to the Butt Tunnel Sump in the south west corner of the Carbon Plant. Surface soils in the garden bed are discoloured black (see **Figure 7**);
- As staining on the external concrete surrounding two hydraulic rooms in the Carbon Plant (see **Figure 7**);
- As staining on the external concrete surrounding the Heating Transfer Medium (HTM) electric heater room and gas heater room in the Carbon Plant (see **Figure 7**);
- As staining on the external concrete surrounding hydraulic rooms in the Casting Plant; and
- Hydraulic oil on the floor of the Butt Crushing Plant (see Figure 7).

ENVIRON notes that the concrete floors of the hydraulic rooms are elevated compared to the surrounding ground level, and reportedly the concrete floors beneath the hydraulic rooms are thicker compared to other building structures.

4.4 Visible Signs of Plant Stress

During site visits conducted by ENVIRON throughout 2012, 2013 and 2014, visible signs of plant stress were observed down gradient of the Capped Waste Stockpile near the eastern site boundary, as shown in **Figure 2**. The plant stress is likely due to a perched fluoride and cyanide groundwater plume originating from the Capped Waste Stockpile which is being assessed separately to this investigation. Consequently, environmental issues associated with the Capped Waste Stockpile are not discussed further in this report.

4.5 Presence of Drums, Wastes and Fill Material

Drums were observed by ENVIRON at the drum store in the eastern portion of the Smelter Site on 15 May 2014. The drum store comprised empty 44 gallon drums of Castrol oil.

During the site visit, smelter wastes were observed at the Anode Waste Pile, where ahead of schedule anodes are stockpiled prior to disposal or reuse and at the Clay Borrow Pit, where refractory bricks and concrete are stockpiled. A second anode waste pile was also observed immediately east of Pot Line 1, where excess anodes have been stockpiled prior to disposal off-site since the closure of the smelter.

Stockpiles of various waste streams were observed on the storage area west of Pot Line 3 during the 2012 site walkover. It is noted that these stockpiles have since been recycled or disposed of and were not present during the recent investigations.

Fill material was observed to have been used to cap the Capped Waste Stockpile. Assessment of the Capped Waste Stockpile is being completed separately to this investigation and the Capped Waste Stockpile is not discussed further in this report.

4.6 Odours

No odours were noted at the Smelter Site during the investigations conducted between 23 June and 2 July 2014. It is noted that the smelter is no longer operational.

4.7 Conditions of Buildings and Roads

Roads at the Smelter Site were noted to be in good condition during the investigations undertaken between 23 June and 2 July 2014. The condition of buildings at the Smelter Site is gradually deteriorating due to a lack of use. Since operations ceased in 2012 and the smelter was put on a care and maintenance mode, rust has developed on the surface of scrubbers and other plant associated with the pot lines. Office buildings remain in good condition.

The care and maintenance team maintain the condition of the buildings at the Smelter Site.

4.8 Quality of Surface Water

There are five storage ponds located at the smelter as shown on **Figure 3**. Surface water from the smelter is directed to these storage ponds via open channels and some concrete subsurface drainage lines. Surface water ponds known as 'East', 'West' and 'South' are pumped to the North dams where excess surface water is discharged to an irrigation area under license from NSW Office of Environment and Heritage (EPL 1548). Surface water dams were constructed by excavation into the residual underlying extremely weathered bedrock.

Currently, an active leachate interception trench placed at the toe of the Capped Waste Stockpile is intercepting leachate from below the Capped Waste Stockpile and diverting it to the East Surge Pond. Further downgradient, a passive leachate interception trench intercepts groundwater following rain events and diverts this groundwater to the East Surge Pond. Surface water quality data from the East Surge Pond and North Dams are monitored for pH, fluoride and cyanide. Data from 2014 monitoring indicates that pH is neutral at 6.5 to 7 in both dams, fluoride concentrations have varied between 5.6mg/L and 20mg/L in the East Surge Pond and 14.8mg/L to 18mg/L in North Dam No. outlet to irrigation and free cyanide concentrations are generally less than the laboratory detection limit. These fluoride concentrations are elevated compared to background levels, which is likely due to the flow of stormwater past the Anode Waste Pile prior to pumping to the North Dam.

4.9 Flood Potential

The majority of the Smelter Site is located on low lying swampy ground that has been filled. Low lying areas of the site remain susceptible to flooding. The western portion of the Smelter Site is located on ground at a higher elevation and is less likely to flood.

The west, south and east surge ponds collect storm water runoff during rainfall events, which is then pumped to the two North Dams. The East Surge Pond has overflowed during periods of heavy rainfall, with storm water flowing east through the Buffer Zone.

4.10 Local Sensitive Environment

Sensitive environments including a creek and a wetland swamp are located in the vicinity of the Smelter Site.

Swamp Creek is located approximately 400m to the south and east of the Smelter Site, flowing in a northerly direction. Swamp Creek flows north into Wentworth Swamp, a large wetland located approximately 1.6km north of the Smelter Site. Swamp Creek is the receptor for groundwater from the eastern portion of the Smelter Site.

Black Waterholes Creek is located approximately 700m to the north of the Smelter Site, flowing in a northerly direction. Black Waterholes Creek flows north into the western portion of Wentworth Swamp. Black Waterholes Creek is the receptor for groundwater from the western portion of the Smelter Site.

Parts of the surrounding land comprising the Buffer Zone are also considered to contain sensitive environments such as the Kurri Kurri Sand Swamp Woodland and Lower Hunter Spotted Gum – Ironbark Forest endangered ecological communities, as well as Freshwater Wetlands on Coastal Floodplains, River-flat Eucalypt Forest on Coastal Floodplains and Central Hunter Ironbark-Spotted Gum-Grey Box Forest endangered ecological communities.

5 Geology and Hydrogeology

5.1 Geology

According to the review of the regional geology described on the Sydney Basin Geological Sheet, the Smelter Site and Buffer Zone are underlain by siltstone, marl and minor sandstone from the Permian aged Rutherford Formation (Dalwood Group) in the Sydney Basin.

The Sydney Basin is a sedimentary basin consisting of Permian and Triassic sedimentary rocks, which extends from Newcastle in the north to Batemans Bay in the south and to Lithgow, just west of the Blue Mountains. The basin overlies older basement rocks of the Lachlan Fold Belt. The sedimentary rocks of the basin generally consist of near horizontal sandstones and shales, with some recent igneous dykes. Only minor folding and faulting has occurred since these sedimentary rock sequences first formed. The Dalwood Group is stratigraphically located near the base of the Sydney Basin below both the Greta Coal Measures and Newcastle Coal Measures and was deposited in a marine environment.

Undifferentiated Quaternary alluvium occurs in the east and northeast in the Buffer Zone associated with surface water bodies. Quaternary sediments which are associated with Swamp Creek (located to the east of the site), Wentworth Swamps and the Hunter River consist of complex interbedded fluvial and marine sands and estuarine muds deposited within an estuarine environment during periods of sea level rise and fall.

5.2 Location and Extent of Fill

The smelter is located in low lying land that was filled to create a level area for the construction of the smelter. The fill material is generally understood to comprise locally derived fill. During the 2012 Phase 2 ESA investigations, crushed refractory brick fill was observed within fill material underlying the Carbon Plant and the Pot Lines.

Clay fill material from the Clay Borrow Pit in the western portion of the Smelter Site was used to cap the Capped Waste Stockpile in the eastern portion of the Smelter Site in 1996. The excavated portion of the Clay Borrow Pit was backfilled with refractory brick and concrete fill.

A portion of the Smelter Site between the north-western fenceline and the Clay Borrow Pit was also filled with material likely to include refractory bricks and concrete waste. This area was recently filled with excess Virgin Excavated Natural Material (VENM) from the construction of the Hunter Expressway immediately south of the Smelter Site.

5.3 Borehole Logs

Borehole logs are available for the impacted area down gradient of the Capped Waste Stockpile, which has been studied extensively in the past 20 years. This information has been reviewed and assessed separately to this report.

Aside from 2012 Phase 2 ESA completed by ENVIRON, borehole logs at the Smelter Site are limited to the area around the bake furnace at the Carbon Plant. Five geotechnical reports were completed by Douglas Partners Pty Ltd in May 1993, September 2001, August 2002, December 2002 and January 2003 in relation to the bake furnace reconstructions within the Carbon Plant.

Subsurface investigations were completed in the vicinity of the Carbon Plant, with boreholes generally extended to rock to assess suitability for pile foundations. The bake furnaces are contained within pits constructed below ground level with 1.8m of granular backfill below the base of the pit to provide thermal insulation to the underlying soil.

Conditions outlined in **Table 5.1** were encountered during subsurface investigations at the Carbon Plant, located in the north-eastern corner of the Smelter.

Table 5.1: Subsurface Conditions beneath the Carbon Plant				
Depth	Lithology			
0m to 2m	Fill, gravelly sand/ sandy gravel			
2m to between 4.2m and 6.5m	Fill, gravel/ sandy gravel with a trace of some clay			
4.2m to 6.5m	Gravelly sand, loose to dense			
6.2m to 11.7m	Clay, hard to very stiff			
11.6m to 17.4m	Sand, dense to medium dense			
17.4m to >24m	Siltstone, low to very low strength at top			

During the 2012 Phase 2 ESA, ENVIRON supervised the drilling of 52 boreholes across the Smelter Site. These boreholes extended to a maximum depth of 16m bgs. The subsurface conditions varied across the Smelter Site, but generally comprised fill material overlying estuarine sediments. The fill material, where encountered, generally comprised clayey gravelly sand and included gravel brick fragments. The estuarine sediments generally comprised fine grained sand, with high plasticity clay encountered in some boreholes.

5.4 On-site Wells

During the Phase 2 ESA, ENVIRON supervised the installation of 21 monitoring wells at the Smelter Site. The wells were installed at Potential Areas of Concern, including the Carbon Plant, the Diesel Spray Area, the Refuelling Area and the Anode Waste Pile.

Prior to the Phase 2 ESA, it is understood that a pair of shallow and deep nested wells were installed at the Carbon Plant as part of the geotechnical investigations for the bake furnace reconstructions.

5.5 Depth to Groundwater Table

Groundwater at the Smelter Site was identified at shallow depths within the estuarine sands, between 1m and 5m bgs during the 2012 Phase 2 ESA.

Groundwater at the Carbon Plant was generally not encountered during geotechnical drilling but standing water levels were measured following drilling at depths ranging between 8.8m and 9.4m. Douglas Partners (2002) noted that temperatures of up to 1000°C were evident at the base of the bake furnace pits, where heat transfer was occurring through the filling and into natural ground. The 2001 Douglas Partners report indicated that soil temperatures of 100 °C to 160 °C at depths of up to 12m below slab level were encountered by Dames and Moore in 1977, with soils desiccated to depths of about 8m below slab level.

AS130383 Z:\Projects\Hydro Australia\AS130383 Phase 2 ESA\Report\Final for Rezoning\AS130383_Hydro_Phase 2 ESA_V1.doc ENVIRON

ENVIRON 2012, and previous investigations by others, identified a shallow sand aquifer extending from the surface to depths of up to 2.0m to the east of Capped Waste Stockpile. Groundwater seepage was observed down-gradient of this area towards the north east. Groundwater flows within the estuarine sands of up to 14m/year have been estimated. Groundwater with the estuarine sands is not used at the site and is not considered a suitable aquifer for use down-gradient of the Smelter Site.

5.6 Direction and Rate of Groundwater Flow

During the 2012 Phase 2 ESA, groundwater was identified flowing north to north east across the Smelter Site. Douglas Partners (2002) measured permeability within the fill of $5x10^{-6}$ m/s and in the sand of $8x10^{-6}$ m/s.

5.7 Direction of Surface Water Runoff

Stormwater water runoff is managed at the Smelter Site via a series of drainage channels and three surge ponds. Surge ponds discharge to the two North Dams, from which excess stormwater is spray irrigated over an adjacent paddock in accordance with EPL1548. There are no other surface water bodies located on the Smelter Site and therefore surface water at the Smelter Site has not been considered further.

Surface water receptors within the Buffer Zone are identified in **Section 4.10**. Groundwater near the eastern Smelter Site boundary exfiltrates to surface water following high rainfall events due to low lying topography in this area. This exfiltrated groundwater is observed to become overland flow discharging along a surface water flowpath to a small dam. During periods of high rain this surface water within this dam is able to flow through a culvert structure to a larger dam which discharges to Swamp Creek.

5.8 Background Water Quality

A background monitoring well was installed as part of the 2012 Phase 2 assessment. The well was installed approximately 60m west of the Smelter plant in undisturbed bushland in an upgradient location. Analysis of water from the background well in 2012 was completed and the results were below the adopted guidelines, including ANZECC (2000) 95% protection of fresh water species, irrigation and stock watering guidelines for heavy metals aside from zinc, fluoride, free cyanide, PAHs, Semi Volatile Organic Compounds (SVOCs). The zinc concentration (78µg/L) marginally exceeded the ANZECC (2000) hardness modified trigger value of 70µg/L.

5.9 Preferential Water Courses

The 1951 historical aerial photograph shows a former water course extending in a northeast/ southwest direction towards Wentworth Swamp in the west of the Smelter Site. It is understood this water course was filled in and relocated to the west to provide a level platform on which to construct Pot Lines 2 and 3.

5.10 Summary of Local Meteorology

A meteorological tower was constructed at the Smelter Site in the 1990s. Data from the meteorological tower is summarised in the 2012 Annual Environmental Management Report (AECOM 2013). AECOM (2013) includes wind speed and direction, presence or absence of inversion layers, calm conditions, rainfall and temperature.

Median, daily highest and lowest hourly average temperatures have been collected over the past 20 years. AECOM (2013) indicate that the 2012 temperatures were above average for summer days and nights.

AECOM (2013) indicates annual rainfall in 2012 was 515mm, which is below the 20 year average of 619mm.

AECOM (2013) indicates quarterly wind roses show the usual pattern of strongest winds from the northwest in winter, moderate winds from the south and southwest in spring and autumn and moderate to strong southeast winds in summer.

6 Sampling, Analysis and Quality Plan

6.1 Preparation of Sampling, Analysis and Quality Plan

A Sampling, Analysis and Quality Plan (SAQP) was completed by ENVIRON in May 2014 to develop sampling requirements for the additional investigations for the Phase 2 ESA. The SAQP included the following:

- Development of Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs);
- Development of the sampling plan, including:
 - Assessment of the Phase 2 ESA results against National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1);
 - A data gap analysis;
 - o Identification of potential areas of concern;
 - The sampling program;
- An outline of soil and groundwater sampling methodologies and sample handling and preservation;
- Assessment criteria; and
- Reporting requirements.

A copy of the SAQP is included in **Appendix B**.

Following service location at the site, the sampling plan was amended to reflect the sampling locations that could be practicably completed. The amended sampling program for the identified areas of environmental concern (AECs) and potential areas of environmental concern (PAECs) is included in **Table 6.1**.

Hydro Aluminium May 2015

No.	AEC/PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
2 AEC: Anode Waste Pile		6,400	Soil	Stratified sampling around outside of stockpile for delineation of contamination	5	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m.	Fluoride, PAHs
			Groundwater	Judgemental down gradient sampling	2 existing wells 2 new wells	Groundwater between 4m and 7m.	PAHs
3	AEC: Refuelling Area	600	Groundwater	Down gradient sampling	2 existing wells 2 new wells	Groundwater between 4m and 7m.	TPH, PAHs
4	AEC: Diesel Spray Area	200	Soil	Stratified sampling to delineate contamination	4	Soils to 1m, samples collected from 0-0.1m, 0.4- 0.5m, 0.8-0.9m	PAHs
6	AEC: East Surge Pond	4,400	Sediment	Due to sampling difficulties encountered during the Phase 2ESA, ENVIRON recomm sampling of sediments from the East Surge Pond once the sediments have been excavated and stockpiled.			
8	AEC: Carbon Plant (western end only)	96,000	Accessible soil	Grid-based sampling of accessible soils to delineate contamination	14	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m	PAHs
			Groundwater	Sampling around and within former Rodding	6 existing wells	Groundwater between 4m and 7m.	PAHs

No.	AEC/PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
				and Greenmix buildings	3 new wells		
11	AEC: Washdown Bay	900	Soil	Grid-based sampling to assess contamination	1	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.3-0.4m	Fluoride
12	AEC: Pot Lines 1, 2 and 3	180,950	Accessible soil	Stratified sampling where accessible to delineate contamination	11	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.1m-0.2m	Fluoride
15	West Surge Pond	4,875	Sediment	Due to sampling difficulties encountered during the Phase 2ESA, ENVIRON recommend sampling of sediments from the West Surge Pond once the sediments have been excavated and stockpiled.			
25	PAEC: Dry Scrubbers (4 separate locations between pot lines)	3,450 per location	Soil	Judgemental sampling to assess contamination	17, at least 4 per location	Surface soils to 0.5m, samples collected from 0- 0.1m and 0.1m-0.2m	Fluoride
25 26	Scrubbers (4 separate locations between pot		Soil	to assess		samples collected from 0-	Fluoride Fluoride, PAHs

No.	AEC/PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
28	PAEC: Playing Fields (two adjacent)	8,100 per oval	Soil	Grid-based sampling to assess contamination	Western field: 10 locations; Eastern field: 6 locations.	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
29	PAEC: Area East of Playing Fields	9,900	Soil	Grid-based sampling to assess contamination	11	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
30	PAEC: Area east of Clay Borrow Pit	28,500	Soil	•	-	the placement of Virgin Excav f the Hunter Expressway, worl	
31	PAEC: Storage Area west of Pot Lines	44,000	Soil	Grid-based sampling to assess contamination	13	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m and 0.4m	Heavy Metals, PTH, BTEX, PAHs, fluoride
							1

6.2 Data Quality Objectives and Data Quality Indicators

Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs) were developed by ENVIRON during the development of the SAQP using the US EPA seven-step DQO process. DQOs for the Phase 2 ESA are included in **Section 4** of the SAQP (**Appendix B**) and DQIs are included in **Section 6** of the SAQP (**Appendix B**).

6.3 Project Fieldwork Phase

6.3.1 Soil Sampling

A summary of the completed fieldwork for each PAEC is outlined in **Table 6.1.** The sampling locations were selected as follows:

- For AECs assessed in the 2012 Phase 2 ESA, soil sampling locations were selected to delineate the vertical and lateral extent of soil contamination. As the mechanism of soil contamination is from either aerial fallout or placement of smelter materials on the surface of the site, surface and near surface soils were targeted. These AECs included the Anode Waste Pile, the Refuelling Area, the Diesel Spray Area, the Carbon Plant, the Washdown Bay and the Pot Lines.
- For PAECs identified during the data gap analysis, soil sampling locations were selected to assess the potential for soil contamination in these areas, including vertical delineation. In areas where buried fill may be located, sampling locations were grid based and the vertical extent of the buried fill (where identified) was identified. These PAECs included the playing fields and area to the east and the storage area west of the pot lines. The other PAECs identified during the data gap analysis included the dry scrubbers at the Carbon Plant and the bake furnace scrubbers at the pot lines, which have the potential for surface soil contamination from aerial fallout. Surface and near surface soils were targeted in these areas.
- For AECs and PAECs that could not be assessed at the current time due to safety considerations, such as the substations and sediments in the stormwater ponds, recommendations have been made for assessment in the future.
- One PAEC, the area to the east of the Clay Borrow Pit, was in use for relocation of VENM from the Hunter Expressway at the time of these investigations. This area will remain a data gap until such time as it can be accessed for assessment.
- It was decided that investigation of PAEC 32, the garden beds, would be completed if required following receipt of the soil results from the current investigation.
- It is noted that sampling locations at the Smelter Site were limited by the location of underground services, overhead services and other site structures. Recommendations have been made where sampling was restricted for these reasons.

The sampling locations at each AEC and PAEC are shown in **Figures 4** to **13**. A description of the field methodologies for soil sampling is included in **Appendix C**.

6.3.2 Groundwater Monitoring Well Installation and Sampling

A summary of the fieldwork for AECs relating to groundwater are included in **Table 6.1**. New monitoring wells were installed at the following locations:

- AEC 2 Anode Waste Pile: Two additional wells were installed down gradient of the Anode Waste Pile to delineate the extent of PAH contamination identified in wells MW12 and MW13 during the 2012 Phase 2 ESA.
- AEC 3 Refuelling Area: Two additional wells were installed at the refuelling area to delineate petroleum hydrocarbon contamination identified in well MW08 during the 2012 Phase 2 ESA. One well was installed immediately down gradient of the diesel bowser and one well was installed down gradient of both MW08 and the bowser. The location of the second well was limited by underground electricity cables.
- AEC 8 Carbon Plant: Three additional wells were installed around the western end of the Carbon Plant to assess potential groundwater contamination in this area associated with processes undertaken at the Carbon Plant. One well was located close to the liquid pitch storage area, an area where a Heat Transfer Medium (HTM) oil spill occurred. One well was located within the Rodding Building down gradient of the butt crushing plant, which crushes anode butts for reuse. The bulk of the butt crushing plant is located within a concrete-cased subsurface pit and the machinery uses hydraulic oil. The third well was located on the down gradient side of the Carbon Plant to delineate any contamination identified in this area.

The new and existing monitoring wells were sampled, with the chemicals selected for analysis specific to each area as outlined in **Table 6.2**. A description of the field methodologies is included in **Appendix C**.

AEC	Monitoring Well IDs	Analysis
AEC2 Anode Waste Pile	2012 wells: MW12, MW13, New ells: MW103, MW104	PAHs, Heavy Metals, aluminium, fluoride
AEC3 Refuelling Area	2012 wells: MW07, MW08, New wells: MW101, MW102	TPH, Heavy Metals, aluminium, fluoride
AEC 4 Diesel Spray Area	2012 wells: MW19, MW20	PAHs, Heavy Metals, aluminium, fluoride
AEC 8 Carbon Plant (western end)	2012 wells: MW16, MW17, MW18, S3A, S3B New wells: MW105, MW106, MW107	PAHs, Heavy Metals, aluminium, fluoride
Remainder of site (background, Flammable Liquid Store Washbay and eastern end of Carbon Plant)	2012 wells: MW6, MW9, MW10, MW11, MW14, MW15,	Heavy Metals, aluminium, fluoride

 Table 6.2: Laboratory Analysis for Groundwater Samples

7 Quality Assurance and Quality Control

The fieldwork program was undertaken in accordance with the DQOs and DQIs outlined in the SAQP (ENVIRON, 2014k), which is included in **Appendix B**.

A quality assurance assessment of the DQIs for this report is presented in **Appendix D**. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NEPC (2013), NSW DEC (2006) and NSW EPA (2007) guidelines.

Overall it is considered that the completed investigation works and the data obtained adequately complied with the DQOs stated in the SAQP and that the data is of suitable quality to meet the project objectives.

8 Basis for Assessment Criteria

8.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following reference:

 National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997*. NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for the site from the NEPM are as follows:

 HIL D – Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.

The NEPM (2013) commercial/industrial values were derived assuming a typical commercial or light industrial scenario, consisting of single or multistorey buildings where work areas are on the ground floor. NEPM (2013) assumed that the commercial/industrial facility is largely covered by handstand with some limited areas of unsurfaced ground (20% of site is unsurfaced). Opportunities for direct access to soil by employees was considered minimal but there is a potential for employees to inhale, ingest or come into direct contact with dust particles derived from the soil on the site. In absence of site specific details, the generic industrial site use exposure profiles are considered applicable.

- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
• Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 8.1**.

Table 8.1: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels					
	HIL D	EIL			
Aluminium	NL(site-specific)3	-			
Arsenic	3000	160			
Cadmium	900	-			
Chromium (VI)	3600	-			
Chromium (III)	-	320 (1% clay)			
Copper	240 000	210 ¹			
Lead	1500	1800			
Nickel	6000	140 ¹			
Zinc	400 000	440 ¹			
Mercury (inorganic)	730	-			
Fluoride	17,000 (site-specific)2	-			
Cyanide (free)	1500	-			
Carcinogenic PAHs (as BaP TEQ)	40	-			
Total PAHs	4000	-			
Naphthalene	-	370			

1 EILs were calculated using the average CEC (7.26meq/100g), soil pH (5.5) and total organic carbon (1.3%) values from eight soil samples collected in the Buffer Zone during the March 2014 investigations (see Appendix E). The NEPM (2013) EIL calculator spreadsheet was used to generate the numbers and a site-specific ambient background concentration (ABC) was not included (rather a default ABC was used as calculated in the EIL calculator).

2. Site-specific industrial fluoride value calculated in the Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)

3. NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL (ENVIRON 2013).

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 8.2** and **Table 8.3**:

Table 8.2: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand						
	0 to <1m	1m to <2m	2m to <4m	4m+		
Toluene	NL	NL	NL	NL		
Ethylbenzene	NL	NL	NL	NL		
Xylenes	230	NL	NL	NL		
Naphthalene	NL	NL	NL	NL		
Benzene	3	3	3	3		
F1(4)	260	370	630	NL		

Table 8.2: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand							
	0 to <1m 1m to <2m 2m to <4m 4m+						
F2(5)	NL NL NL NL						

1 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)
		Commercial and Industrial	Commercial and Industrial
F1 C6- C10	Fine	215*	800
F2 >C10-C16	Fine	170*	1000
F3 >C16-C34	Fine	2500	5000
F4 >C34-C40	Fine	6600	10 000
Benzene	Fine	95	-
Toluene	Fine	135	-
Ethylbenzene	Fine	185	-
Xylenes	Fine	95	-
Benzo(a)pyrene	Fine	72 ⁵	-

Table 8.3: ESLs and Management Limits for Petroleum Hydrocarbons in Soil

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

 2 Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

 3 ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction.

5 Benzo(a)pyrene ESL criteria from Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Scientific Criteria Document (revised)

NEPM (2013) includes a low reliability ecological screening criterion for benzo(a)pyrene of 1.4mg/kg for commercial/industrial land use. This criterion has been adopted from Environment Canada (1999) benzo(a)pyrene soil quality guideline, which is based on toxicity data for a single invertebrate species (an earthworm). Environment Canada revised their benzo(a)pyrene soil quality guideline in 2010 using the Species Sensitivity Distribution method, which is the preferred method for the derivation of ecological investigation levels and can only be used where sufficient toxicity data are available that adhere to rigorous quality control requirements. ENVIRON has elected to use the revised Environment Canada

AS130383

soil quality guideline of 72mg/kg, for commercial/industrial land use, as the most relevant ecological investigation level for benzo(a)pyrene at the Smelter Site as this guideline has been derived from a larger and more up-to-date toxicity database than the NEPM (2013) low reliability criterion.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro Aluminium Kurri Smelter. The screening levels are protective of the range of human receptors and are provided in **Table 8.4**.

Table 8.4: Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)				
Preliminary screening levels				
Land Use Preliminary screening level				
Commercial/ industrial - soil 17,000mg/kg				

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - o no single value exceeds 250% of the relevant investigation or screening level.

8.2 Groundwater

The assessment criteria proposed for the assessment of groundwater contamination are sourced from the following references:

- National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013).
- National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water.
- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination.
- ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.

8.2.1 Potential Beneficial Uses

NSW DEC (2007) indicates that for assessing groundwater quality, it is first necessary to assess the beneficial uses of groundwater and surface water down gradient of the site.

Aside from the five stormwater storage ponds located at the site, the closest surface water receptor is a natural drainage area called Swamp Creek located to the north-east of the site within an area of the buffer zone used for farming. This drainage area discharges to the Hunter River approximately 15km north-east of the site near Maitland.

Surface water within Swamp Creek is described generally as neutral, ranging between pH 7.0 and 7.8 and conductivity was generally fresh, ranging from 626μ S/cm to 1520μ S/cm. This surface water body is considered to be a fresh water receptor.

Groundwater is expected to follow the topography and flow north-east towards surface water bodies that feed into the Hunter River.

According to the Office of Industry and Investment, NSW, there are 17 licensed groundwater abstractions (bores) located within the site, which are known to be associated with monitoring of groundwater impact. There are no other licensed groundwater bores within 2km of the site.

Potential beneficial uses of groundwater down gradient of the site include:

- Discharge into Swamp Creek, which supports aquatic ecosystems and potentially flows into the Hunter River;
- Recreational use of Swamp Creek for swimming and fishing; and
- Abstraction of water from Swamp Creek may also be used for stock watering and/ or irrigation.

8.2.2 Appropriate Criteria for Groundwater

Based on the review of potential beneficial uses of groundwater and surface water, the criteria for protection of aquatic ecosystems, recreation, irrigation and stock watering will be used.

The investigation levels presented in ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality are considered applicable for the protection of aquatic ecosystems of receiving waters. ANZECC (2000) advocates a site-specific approach to developing guideline trigger values based on factors such as local biological affects data and the current levels of disturbance of the ecosystem. The guidelines present 'low risk trigger values' which are defined as concentrations of key performance parameters below which there is a low risk of adverse biological effects. If these trigger values are exceeded, then further action is required which may include further site-specific investigations to assess potential contamination or management/ remedial action.

Low risk trigger values are presented in Table 3.4.1 of ANZECC (2000) for the protection of 80-99% of species in fresh and marine waters, with trigger values depending on the health of the receiving waters.

Groundwater results will be compared against trigger values for the protection of 95% of freshwater species where available (low reliability values are used in absence of high reliability values). ANZECC (2000) indicates there is currently insufficient data to derive a high reliability trigger value for TPH but propose a low reliability trigger value of $7\mu g/L$. This guideline is considered by industry to be overly conservative and is well below the TPH detection limit that most laboratories can achieve. Therefore the limit of reporting (LOR) will be adopted as a screening trigger for TPH.

Trigger values for cadmium, chromium (III), copper, nickel, lead and zinc can be modified for water hardness in accordance with ANZECC (2000) methodology outlined in Section 3.4.3.2 and Table 3.4.3. The bioavailability of these heavy metals decreases with increasing hardness. Hardness (CaCO₃) was tested in up gradient wells at the Clay Borrow Pit during the 2012 Phase 2 ESA investigations, with results indicating 'extremely hard water' (>400mg/L CaCO₃) as defined by ANZECC (2000). The average hardness (as CaCO₃) reported in MW1, MW3 and MW4 in July 2012 up-gradient from the Clay Borrow Pit (387mg/L) was used to calculate the hardness modified trigger values for this report in accordance with the equations provided in Table 3.4.3 of ANZECC (2000).

Guidelines for Managing Risks in Recreational Water (2008) indicates that a qualitative assessment of recreational use can be undertaken using 10 times the concentrations of chemicals stipulated in the Australian Drinking Water Guidelines (2011). This is based on an assumed contribution for swimming equivalent to 10% of drinking water consumption.

Investigation levels for livestock drinking water are not available for organic contaminants, such a TPH and PAHs. In the absence of available investigation levels, human health drinking water levels will be used from NHMRC (2011) Australian Drinking Water Guidelines for screening criteria.

The ENVIRON (2013) Health Risk Assessment identified a preliminary screening criteria of 1,500µg/L for fluoride for recreational use. This guideline value has been adopted in this evaluation, as Swamp Creek, the closest surface water body, is used recreationally. The guideline that is protective of aquatic ecosystems has not been developed.

Table 8.5: Groundwater Assessment Criteria (µg/L)							
Contaminant	95% Protection for Aquatic Ecosystems	Recreational use	Irrigation (long-term trigger value)	Stock Watering			
Aluminium	55	9000 (site-specific)	5000	5000			
Fluoride	-	1500 ^(site-specific)	1000	2000			
Arsenic (AsIII)	24	100	100	500			
Cadmium	2 (HMTV)	20	10	10			
Chromium (CrIII)	27 ^(HMTV)	500 (as CrVI)	100	1000			
Copper	12 ^(HMTV)	20,000	200	500			
Lead	87 (HMTV)	100	2000	100			

A summary of the assessment criteria for groundwater are provided in Table 8.5.

Table 8.5: Groundwater Assessment Criteria (µg/L)					
Contaminant	95% Protection for Aquatic Ecosystems	Recreational use	Irrigation (long-term trigger value)	Stock Watering	
Nickel	97 (HMTV)	200	200	1000	
Zinc	70 (HMTV)	30,000	2000	20,000	
Mercury	0.6	10	2	2	
TPH C6-C36	LOR	-	LOR	LOR	
Benzene	950	10	-	-	
Toluene	180 ^(LR)	250	-	800 (25)	
Ethylbenzene	80 ^(LR)	30	-	300 (3)	
Xylene	200	200	-	600 (20)	
Benzo(a)pyrene	0.2 ^(LR)	0.1	-	0.01	
Naphthalene	16	-	-	-	
Phenanthrene	2	-	-	-	
Fluoroanthene	1	-	-	-	
Cyanide (free)	7	800	-	-	

Notes:

HMTV: hardness modified trigger values calculated in accordance with ANZECC (2000) methodology

LR: low reliability trigger values

Site-specific: fluoride and aluminium recreational values are site-specific and were calculated in the Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON, 2013)

9 Results

The fieldwork program was undertaken in accordance with the DQOs and DQIs outlined in the SAQP (ENVIRON, 2014k). The results have been presented per AEC/ PAEC with the exception of fluoride results in soil, which are discussed in **Section 9.1**.

The borehole, test pit and hand auger logs are included in **Appendix F**. Laboratory reports for soil are included in **Appendix G**. Laboratory reports for groundwater are included in **Appendix H**.

9.1 Fluoride in Soil

Assessment of the potential for fluoride contamination in soil was undertaken at the following areas of concern:

- AEC 2 Anode Waste Pile (results in Table LR1);
- AEC 11 Washdown Bay (results in Table LR4);
- AEC 12 Pot Lines (results in Table LR5);
- PAEC 25 Dry Scrubbers (results in Table LR5);
- PAEC 26 Bake Furnace Scrubber (results in Table LR6);
- PAEC 28 Playing Fields (results in Table LR7);
- PAEC 29 Area East of the Playing Fields (results in Table LR8); and
- PAEC 31 Storage Area west of Pot Lines (results in Table LR9).

Assessment of the Anode Waste Pile, Carbon Plant, Washdown Bay and the Pot Lines in the 2012 Phase 2 ESA included analysis of total fluoride in soil. There are no national or state guidelines for the assessment of fluoride in soil. A literature review of international guidelines was completed for the 2012 Phase 2 ESA and a criterion of 2000mg/kg was used for fluoride for that investigation. The 2012 Phase 2 ESA recommended undertaking a human health risk assessment to determine a site-specific guideline for fluoride.

The risk assessment was completed in 2013 (ENVIRON (April 2013) *Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford*) and provided a guideline for fluoride of 17,000mg/kg for industrial landuse. This guideline is based on soluble fluoride, not total fluoride. As such, analysis of soluble fluoride was completed for the current investigation.

Soluble fluoride concentrations at the AECs assessed during this current investigation are considerably lower than total fluoride results reported in the 2012 Phase 2 ESA. The Health Risk Assessment (ENVIRON 2013) indicates that fluoride salts are strongly sorbed to soil, which explains why the soluble fluoride concentrations are considerably lower than total fluoride concentrations.

Soluble fluoride concentrations at the AECs and PAECs assessed during this investigation are below the site specific guideline of 17,000mg/kg.

9.2 AEC 2 Anode Waste Pile

9.2.1 Soil

Soil results for the Anode Waste Pile from the 2012 Phase 2 ESA and the current investigations are included in **Table LR1**. Soil results from the 2012 Phase 2 ESA indicated there are PAHs in soil at the Anode Waste Pile that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. Five additional soil sampling locations were completed in the recent investigations to assess the nature and extent of the PAHs in soil.

Soil results from the additional investigations identified PAHs exceeding the NEPM (2013) HIL D criteria at two sampling locations, SB105 and MW103. Both soil locations comprised crushed anodes in fill material, which is the likely origin of the PAHs.

Sampling locations at the Anode Waste Pile were limited to accessible areas between anode stockpiles where concrete had not been used as a base to the anode stockpile. Concrete was observed to have been used beneath the majority of the area comprising the Anode Waste Pile, with limited directly accessible ground.

The shallow fill material (0-0.2m bgs) comprised benzo(a)pyrene TEQ concentrations exceeding the NEPM (2013) HIL D criteria (40mg/kg), with a 95% Upper Confidence Limit (UCL) of 48mg/kg.

Deeper fill material (0.2-0.6m bgs) comprised benzo(a)pyrene TEQ concentrations below the NEPM (2013) HIL D criteria, aside from at one location (MW103) which is considered to be a 'hot spot' of contamination.

Based on the laboratory results, shallow fill material has been impacted by PAHs associated with the stockpiling of ahead of schedule anodes at the Anode Waste Pile. Sampling undertaken to date shows that deeper fill material has not been impacted, aside from one location on the northern boundary.

9.2.2 Groundwater

Groundwater results for the Anode Waste Pile from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. Groundwater results from the 2012 Phase 2 ESA indicated there were PAHs (fluoranthene and benzo(a)pyrene) in groundwater at concentrations exceeding the ANZECC (2000) low reliability guidelines for protection of fresh water species . Two additional wells were installed across (MW103) and down gradient (MW104) of the existing wells.

In the July 2014 sampling event, PAH concentrations in groundwater at the new and existing wells around the Anode Waste Pile were below the ANZECC (2000) guidelines for 95% protection of fresh water species.

Elevated fluoride and aluminium concentrations were detected at the Anode Waste Pile (MW13: F 40,000µg/L, AI 2,500µg/L; MW103: F 12,000µg/L, AI 7,700µg/L; MW104: F 13,000µg/L, AI 1,300µg/L. Groundwater concentrations are discussed further in **Section 9.10.**

9.3 AEC 3 Refuelling Area

9.3.1 Soil

No soil samples were collected in AEC 3 during this current investigation and the 2012 ESA fieldworks. The refueling area has always been surfaced and fuel infrastructure, including the diesel storage tank, bowser and connecting pipework are above ground. The extent of impacts from the refueling area are therefore best understood by assessing impacts to groundwater.

9.3.2 Groundwater

Groundwater results for the Refuelling Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. Groundwater results from the 2012 Phase 2 ESA indicated there were C_{15} - C_{28} petroleum hydrocarbons in groundwater close to the Refuelling Area. Two additional groundwater monitoring wells were installed during the recent investigations to assess the extent of the petroleum hydrocarbons in groundwater down gradient of the Refuelling Area.

One new monitoring well, MW101, was located immediately down gradient of the diesel bowser. The other new monitoring well, MW102, was located approximately 8m down gradient of the existing monitoring well MW08. This well could not be located any further away from MW08 due to extensive underground services in the roadway and the location of buildings in this area.

Petroleum hydrocarbon concentrations in groundwater at the existing and new wells are generally below the laboratory limit of reporting, aside from minor TPH C_6 - C_9 concentrations (18µg/L) adjacent to the bowser. These concentrations indicate that contamination of groundwater has not occurred from the activities and infrastructure at the refuelling area.

The lack of petroleum hydrocarbons in groundwater down gradient of the Refuelling Area indicates hydrocarbon groundwater contamination issues associated with this area have not been identified.

Fluoride concentrations in three of the four wells and aluminium concentrations in one of the wells exceed the adopted criteria. The elevated fluoride and aluminium concentrations are not associated with any specific activities at the Refuelling Area and are representative of fluoride and aluminium concentrations in groundwater beneath the smelter. Further assessment is included in **Section 9.10**.

9.4 AEC 4 Diesel Spray Area

9.4.1 Soil

Soil results for the Diesel Spray Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR2**. Soil results from the 2012 Phase 2 ESA indicated there are PAHs in soil at the Diesel Spray Area that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ.

Four additional sampling locations were completed in the recent investigations to assess the extent of the PAHs in soil in this area. Results from the current investigation indicate concentrations of PAHs at one location (SB112) at a depth of approximately 0.5m bgs exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ (40mg/kg).

Of the three locations with PAH concentrations exceeding the criteria, PAH concentrations in borehole MW19 (150.2mg/kg) are more than 2.5 times the guideline and this result is considered a 'hot spot' of contamination.

The 95% Upper Confidence Limit (UCL) of the mean for BaP TEQ concentrations (excluding the hot spot concentration) is 84.6mg/kg, which exceeds the guideline. As such, this area is considered to be contaminated with PAHs at a concentration that requires remediation.

The PAH contamination is likely to be associated with black sandy material identified during the field investigations. It is likely that PAH contaminated fill material was used to fill this area prior to the development of the Diesel Spray Area. It is noted that the PAH contamination is limited to the black sandy fill material and has not impacted other fill materials or the underlying alluvial sands. The PAH contamination has also not impacted groundwater. The vertical extent of the black sandy fill material is between 0.4m and 0.8m bgs, as noted in the borehole logs for this AEC. The lateral extent of the PAH contamination requires further delineation.

9.4.2 Groundwater

Groundwater results for the Diesel Spray Area from the 2012 Phase 2 ESA and the current investigations are included in **Table LR10**. During the 2012 Phase 2 ESA groundwater was analysed for TPH and PAHs, with results below the adopted guidelines. During the current Phase 2 ESA groundwater was analysed for heavy metals, with results below the adopted guidelines except for aluminium concentrations in MW20. Further assessment is included in **Section 9.10**.

9.5 AEC 8 Carbon Plant

9.5.1 Soil

Soil results for the Carbon Plant from the 2012 Phase 2 ESA and the current investigations are included in **Table LR3**. Soil results from the 2012 Phase 2 ESA identified PAHs in shallow soil at a sampling location (MW18) at the western end of the Carbon Plant that exceed the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. Thirteen additional soil sampling locations were completed in the recent investigations to assess the extent of the PAHs in soil around the western end of the Carbon Plant.

It is noted that borehole MW18 was located in a garden bed adjacent to the butt tunnel sump that was used to collect anode butts prior to reprocessing. Black stained soils were evident in the garden bed, with the source of the contamination likely to be the deposition of carbon dust from the adjacent butt tunnel sump.

Soil results from the western end of the Carbon Plant identified PAH contamination in shallow soil in three grassed areas near the location of MW18. The benzo(a)pyrene TEQ concentrations at one location, HA107 (140mg/kg at 0.1m bgs and 260mg/kg at 0.2m bgs) were more than 2.5 times the adopted soil guideline and these results are considered a 'hot spot' of contamination.

Aside from the hot spot, the 95% UCL for benzo(a)pyrene TEQ in grassed areas is 47.3mg/kg, which exceeds the NEPM (2013) HIL D criteria. It is noted that PAH concentrations in grassed areas were elevated compared to areas surfaced with bitumen, further indicating that the mechanism of contamination is from aerial deposition primarily

from the Carbon Plant. The analytical soil data indicates that PAH contamination impacts are localised to shallow surface soils and have not impacted soils at depth.

9.5.2 Groundwater

Groundwater results for the Carbon Plant from the 2012 Phase 2 ESA and the current investigations are included in **Tables LR10 and LR11**. Groundwater results from the 2012 Phase 2 ESA indicated there were PAHs (anthracene and benzo(a)pyrene), aluminium and fluoride in groundwater at concentrations exceeding the site criteria near the liquid pitch storage area. Anthracene and benzo(a)pyrene exceeded ANZECC (2000) low reliability trigger values for the protection of 95% of fresh water species. ANZECC (2000) indicates low reliability trigger values should not be used as default guidelines although it is reasonable to use them in the risk-based decision scheme to determine if conditions at the site increase the potential risk.

Two additional wells were installed to target other areas of the Carbon Plant with the potential to have PAH impacts to groundwater, including the Heat Transfer Medium (HTM) oil system (MW105) and the butt crushing plant (MW107). A down gradient monitoring well (MW106) was also installed on the northern side of the Carbon Plant.

PAH concentrations in groundwater at the new and existing wells around the Carbon Plant were below the ANZECC (2000) guidelines for 95% protection of fresh water species. Based on the results of the two rounds of sampling, it is considered that the concentrations of PAHs in groundwater are not significant enough to warrant further investigation.

Fluoride and aluminium were detected at concentrations exceeding the site criteria around the Carbon Plant. The highest concentrations were around the Butt Crushing Plant, which is used to recycle anode butts. Further assessment is included in **Section 9.10**.

9.6 PAEC 26 Bake Furnace Scrubber

9.6.1 Soil

Soil results for the Bake Furnace Scrubber from the current investigations are included in **Table LR6**. Sampling of sediments within a drain near the Bake Furnace Scrubber (D9) was completed during the 2012 Phase 2 ESA. Soil sampling was completed at 10 locations in grassed areas around the Bake Furnace Scrubber to assess the potential for PAH contamination in this area.

Soil results identified PAHs at concentrations exceeding the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ at three locations, HA115, HA116 and HA117. Two of the concentrations (440mg/kg at HA115 and 120mg/kg at HA117) are more than 2.5 times the guideline (40mg/kg) and these results are considered 'hot spots' of contamination.

At HA115, the elevated PAHs were identified in surface soils comprising black ash/ gravel material, likely spilt Ring Furnace Reacted Alumina, which contains unburnt coal tar pitch. This material was not vertically delineated at this location due to limitations with the method of sampling (hand augering). Vertical and lateral delineation of this material is required.

At HA116 and HA117, the elevated PAHs were identified in brown silty sand fill material. This material has been vertically delineated to a depth of 0.3m bgs during this current investigation and the soil data indicates that PAHs have not impacted underlying fill materials. Laterally, this material is considered to be confined to the grassed areas in which the soil samples were located, which were below the scrubber duct work.

9.6.2 Groundwater

No groundwater samples were collected in PAEC 26 during this current investigation or the 2012 ESA field works. It is noted that a down gradient well (MW20) indicates the PAHs in shallow soil have not impacted groundwater.

9.7 PAEC 28 Playing Fields

9.7.1 Soil

Soil results for the Playing Fields from the current investigations are included in **Table LR7**. No sampling was completed at the Playing Fields during the 2012 Phase 2 ESA. Soil sampling was completed at 16 locations during the current investigation to assess the potential for buried fill material in this area.

Fill material was identified within two (TP111 and TP116) of the 16 test pits, which were located in a grid pattern across the two Playing Fields. Fill in TP111 comprised silty clay with some house bricks. Two additional test pits were excavated close by, with one house brick found in one of the pits. The bricks were limited to this area. Fill in TP116 comprised a black slag-like fill material used as bedding sand for a PVC irrigation pipe. This fill was not identified in other test pits and is likely confined to the locations of the irrigation pipes. This material was confirmed to be quarry crusher dust by the Hydro Environment Manager, Mr McNaughton.

As limited fill material was identified, analysis was completed on soil samples from seven of the 16 sampling locations, including the fill identified at both TP111 (house bricks) and TP116 (quarry crusher dust used as bedding sand for irrigation pipes (logged as slag)). Concentrations of petroleum hydrocarbon, PAHs and soluble fluoride were below the NEPM (2013) HIL D criteria, indicating there are no soil contamination issues relating to these compounds in this area.

Lead was detected in the sample of quarry crusher dust from TP116 at a concentration of 1600mg/kg, marginally exceeding the NEPM (2013) HIL D criteria of 1500mg/kg. Copper and zinc were detected in this same sample at concentrations exceeding the NEPM (2013) EIL criteria. The surface soils were observed to comprise black quarry crusher dust used as bedding sand for a PVC irrigation pipe. Given the quarry crusher dust is confined to the locations of the irrigation pipes and has not impacted on grass growth at the playing fields, the elevated copper and zinc concentrations are not considered to require further assessment. The lead concentration is considered to be natural to this material and given that a small volume of quarry crusher dust has been used in the drainage lines, further consideration of this material is also not required.

9.7.2 Groundwater

No groundwater samples were collected in PAEC 28 during this current investigation or the 2012 ESA field works.

9.8 PAEC 29 Area East of Playing Fields

9.8.1 Soil

Soil results from the area east of the Playing Fields are included in **Table LR8**. No sampling was completed in this area during the 2012 Phase 2 ESA. Soil sampling was completed at 10 locations during the current investigation to assess the potential for buried fill in this area.

Fill material was identified in nine of the 10 test pit locations, varying in depth from 1.0m to 1.6m. The fill material comprised wastes such as concrete pieces, refractory brick, metal sheeting, metal reinforcement, plastic sheeting, timber, fence posts, broken glass, electrical wire, steel posts and old cable.

Concentrations of heavy metals, soluble fluoride and petroleum hydrocarbons were below the NEPM (2013) HIL D criteria. PAHs were identified in one soil sample from TP117 at a concentration of 310mg/kg, exceeding the NEPM (2013) HIL D criteria for benzo(a)pyrene TEQ. As this concentration is more than 2.5 times the guideline, it is considered a 'hot spot' of contamination.

It is noted that the presence of smelter wastes represents an impact on visual amenity and safety risk to the proposed future commercial/ industrial use of the property.

9.8.2 Groundwater

No groundwater samples were collected in PAEC 29 during this current investigation or the 2012 ESA field works.

9.9 PAEC 31 Storage Area West of Pot Line 3

9.9.1 Soil

Soil results for the Storage Area west of Pot Line 3 are included in **Table LR9**. No sampling was completed in this area during the 2012 Phase 2 ESA. Soil sampling was completed at 13 locations during the current investigation to assess the potential for buried fill in this area.

Minor fill material was identified within 400mm of the site surface across this area, generally comprising gravelly material with minor inclusions of aluminium scrap, metal reinforcement, timber and metal scrap.

Concentrations of heavy metals, soluble fluoride, petroleum hydrocarbons and PAHs were below the NEPM (2013) commercial/ industrial criteria, indicating there are no soil contamination issues in this area.

9.10 Site-Wide Assessment of Groundwater

Groundwater results for the site are included in **Tables LR10 and LR11**. During the 2012 Phase 2 ESA, groundwater wells were installed at identified PAECs to assess the potential for groundwater contamination. In addition, one background well (MW06) was installed during the Phase 2 ESA fieldworks which is located off a fire access trail to the south west of the Smelter Site.

During the current investigation, additional wells were installed to further characterise potential groundwater contamination identified in 2012 at the Refuelling Area, the Carbon Plant and the Anode Waste Pile. Results relating to these areas are discussed above.

A second round of groundwater analysis was completed at seven wells installed across the Smelter Site (at locations including the Diesel Spray Area (MW19 and MW20), Flammable Liquid Store (MW9 and MW10), the Washbay (MW11) and the eastern end of the Carbon Plant (MW14 and MW15)) during the current investigation, with analysis for heavy metals, aluminium and fluoride.

Aluminium was detected at the majority of wells at the Smelter Site at concentrations exceeding the ANZECC (2000) guidelines for 95% protection of fresh water species. The aluminium concentration in the background well (MW06, $180\mu g/L$) exceeded the ANZECC (2000) guideline of $55\mu g/L$ in the current sampling round. Aluminium concentrations across the Smelter Site vary between $<10\mu g/L$ and $5000\mu g/L$. Source related impacts appear to have occurred beneath the Anode Waste Pile and at the Carbon Plant, where consistently higher aluminium concentrations were identified. Aluminium concentrations in two of the three down gradient monitoring wells, including MW15 near the eastern boundary and MW106 near the northern boundary, were at similar concentrations to water in the background well. Concentrations in MW20, near the northern boundary, were elevated above background at $1500\mu g/L$.

Fluoride was detected at the majority of wells at the Smelter Site at concentrations exceeding the ENVIRON (2013) site-specific preliminary irrigation (1mg/L), recreational (1.5mg/L) and/or stock watering (2mg/L) guidelines. The highest fluoride concentrations (40mg/L) were detected in groundwater beneath the Anode Waste Pile are likely due to the storage of anodes in this area. High fluoride concentrations were also detected at the western end of the Carbon Plant in MW18. It is noted that fluoride concentrations in this well have reduced from 35mg/L in 2012 to 17mg/L in 2014, indicating the removal of the fluoride source (the recycling of anode butts in this area) has resulted in a reduction of fluoride in groundwater. Longer term monitoring would be required to confirm this trend.

Zinc was identified in the background well (MW06) and at the Anode Waste Pile (MW103) at concentrations exceeding the ANZECC (2000) hardness modified trigger value. Given zinc concentrations across the remainder of the Smelter Site are below the trigger value and up gradient concentrations are elevated, further assessment of zinc in groundwater at the Smelter Site is not required.

It is noted that elevated heavy metal concentrations were identified in 2012 at well MW12 beneath the Anode Waste Pile. These results appear to be anomalous, with results from the current investigation an order of magnitude lower and consistent with results from other wells in this area.

10 Site Characterisation

10.1 Conceptual Site Model

A conceptual site model (CSM) is a site-specific qualitative description of the source(s) of contamination, the pathway(s) by which contaminants may migrate through the environmental media, and the populations (human or ecological) that may potentially be exposed. This relationship is commonly known as a Source-Pathway-Receptor (SPR) linkage. Where one or more elements of the SPR linkage are missing, the exposure pathway is considered to be incomplete and no further assessment is required.

Following field investigations and an assessment of the laboratory results, ENVIRON developed a preliminary CSM in the 2012 Phase 2 ESA report. This CSM has been updated following the results of the current investigation and is described below.

10.1.1 Contamination Sources

The 'contaminant source' is identified by comparison of observed chemical(s) of potential concern (CoPC) concentrations in the media of concern (soil, groundwater) at the site against the adopted screening criteria for this site (refer to **Section 8**). A potential 'source' is identified when the CoPC concentration is reported to be present in the environmental media at the site above assessment criteria which have been derived based on human health and ecological protection.

The soil impacts detected on the Smelter Site are primarily associated with PAH impacts, in particular benzo(a)pyrene in shallow soil. Fluoride concentrations are not considered to be a contaminant source, as fluoride salts are strongly sorbed to soil and are not bio-available, with soluble fluoride concentrations below the site-specific criteria.

A summary of the soil contamination detected on the Smelter Site is provided in **Table 10.1** below.

Table 10.1	Table 10.1: Summary of Site Soil Contamination						
Site Activity	Site Area	Description	Impacts in Soil	Depth of Soil Impact (m bgs)			
Waste stockpiling	Anode Waste Pile (AEC 2)	Long term stockpiling of 'ahead of schedule anodes' in low lying ground adjacent to the Capped Waste Stockpile.	BaP	0-0.2, fill extends to 0.9			
Burial of Waste	Area East of Playing Fields (PAEC 29)	Waste materials, including concrete, refractory brick, metal sheeting, metal reinforcement, plastic sheeting, timber, fence posts, broken glass, electrical wire, steel posts and old cable.	BaP	0.5, fill extends to 1.0			
Site Operations	Carbon Plant (AEC 8)	Impacts in the vicinity are likely due to the accumulation of dust from the Carbon Plant. Impacts in garden beds and grassed areas.	BaP	0-0.4			

It is noted that the Capped Waste Stockpile and Clay Borrow Pit have not been included in **Table 10.1** as this AEC has been assessed separately to this investigation.

Table 10.1: Summary of Site Soil Contamination						
Site Activity	Site Area	Description	Impacts in Soil	Depth of Soil Impact (m bgs)		
	Bake Furnace Scrubber (PAEC 26)	Impacts associated with the accumulation of black sandy material likely to be spilt Ring Furnace Reacted Alumina.	BaP	>0.3		
		Impacts to shallow surface soil beneath the scrubber duct work.	BaP	0-0.3		
Fill Importation	Diesel Spray Area (AEC 4)	Likely that impacted fill material was used to level this portion of the site.	BaP	0.4-0.6		

Site-wide groundwater contamination has occurred at the Smelter Site primarily due to the leaching of fluoride and aluminium from smelter materials into groundwater. Fluoride concentrations ranged between 0.22 and 43mg/L, and aluminium concentrations ranged between 0.08 and 13.6mg/L over two sampling rounds.

Impacted sediment is also a media of concern on the Smelter Site at the following areas, and a summary of sediment concentrations reported during the initial Phase 2 investigation is presented in **Appendix A**:

- Drainage Lines Near Anode Waste Pile and Capped Waste Stockpile (AEC 5): PAH contaminated sediments have accumulated in the drainage line adjacent to the Anode Waste Pile and Capped Waste Stockpile.
- *East Surge Pond (AEC 6):* PAH contaminated sediments have accumulated within the East Surge Pond, which is immediately down gradient of the drainage lines near the Anode Waste Pile and the Capped Waste Stockpile; and
- West Surge Pond (AEC 15): Total fluoride at concentrations exceeding the sitespecific criteria were detected here. Consistent with soil data, it is likely that analysing for soluble fluoride in sediment will result in West Surge Pond no longer being an AEC. Sampling was not conducted as part of this investigation due to sampling difficulties encountered during the Phase 2 ESA. The sediment can be sampled once the sediments have been excavated and stockpiled.

10.1.2 Human and Ecological Receptors

The receptors identified in this CSM were based on a current and future General Industrial (IN1) and Heavy Industrial (IN3) use of the Smelter Site. Receptors in the hydraulic downgradient area of the Buffer Zone were also considered during development of this CSM due to potential off-site migration of groundwater impacts and dust deposition from historical sources. Land use in this down-gradient area currently includes the Kurri Kurri Speedway and Junior Motorcycle Club, farmland and vacant bushland.

Receptors not down hydraulic-gradient, such as residents to the south-east, were not considered because:

- recent studies conducted in the Buffer Zone did not identify impacts to surface soil (ENVIRON, 2014a-j);
- they are not located down -hydraulic gradient and therefore any migrating groundwater impacts are unlikely to impact these receptors; and
- the source of aerial dust deposition from the Smelter Site to off-site areas is no longer present because the Smelter has ceased operations. Impacts to Buffer Zone areas has been assessed and reported sepearately (ENVIRON, 2014a-j).

The human receptors identified included:

- current adult Smelter employees, contractors and visitors (non-intrusive site receptors);
- current and future on-site intrusive maintenance and construction workers;
- future on-site commercial/industrial adult employees; and
- off-site recreational users of the Kurri Kurri Speedway and Junior Motorcycle Club located approximately 260m down-gradient of the Smelter Site in the Buffer Zone.

It is noted that there are no current users of the playing fields and due to the industrial nature of the plans for the future site use, there will be no future users of the playing fields, as such human receptors associated with the playing fields do not exist.

The ecological receptors identified included:

- current and future livestock within the Buffer Zone including cattle; and
- native and introduced flora and fauna within the buffer zone including aquatic receptors in Swamp Creek and Wentworth Swamp.

10.1.3 Exposure Pathways

In order for a human receptor to be exposed to a chemical contaminant derived from a site, there should be an exposure pathway linking the source of contamination and the exposed population. An exposure pathway describes the course a chemical or physical agent takes from the source to the exposed individual and generally includes the following elements:

- a source and mechanism of chemical release;
- a retention or transport medium (or media where chemicals are transferred between media);
- a point of potential human contact with the contaminated media; and
- an exposure route (e.g. ingestion, inhalation) at the point of exposure.

A detailed assessment of the potential exposure pathways for the receptors identified above is presented in **Table 10.2** below.

Shallow Surface Soil	Potentially	Complete Source-Pat	Justification		
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
Dermal contact with soil & dust	N	Y	N	N	Shallow (0-0.4m bgs) impacted soil
Incidential ingestion of dust/soil	Ν	Y	N	N	reported on-site.
Dermal contact with dust only	Y	Ν	N	N	Shallow (0-0.4m bgs) impacted soil reported on-site in unpaved areas – potenital for dust generation. The source of aerial dust deposition to off- site areas no longer present as
Outdoor dust inhalation	Y	Y	N	N	Smelter is closed and soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j).
Indoor dust inhalation	Y	Ν	N	N	Outdoor dust can be transported indoors.
Indoor inhalation of vapours	N	Ν	N	N	No volatile chemicals detected in
Outdoor inhalation of vapours	N	Ν			Phase 2 investigations above assessment criteria
Vegetable/fruit ingestion	N	Ν	N	N	No vegetable/fruit grown on-site or off- site in the down-gradient Buffer Zone area. Soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j)
Ingestion of Buffer Zone flora (e.g.grass)	N	Ν	N	N	Cattle in the down-gradient Buffer Zone consume grass however site- specific studies have shown cattle have acceptable levels of fluoride (AECOM 2013). The source of aerial dust deposition to off-site areas no longer present as Smelter is closed.
BaP Impacts to Buried Fill at the			1	1	
Dermal contact with soil and dust	N	Y	N	N	Impacted fill material identified at a
Incidential ingestion of dust/ soil	Ν	Y	N	N	depth of 0.4-0.6m bgs at the Diesel

Shallow Surface Soil	Potentially	Complete Source-Pat	Justification		
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
					Spray Area.
Dermal contact with dust only	N	N	N	N	No dust generation from impacted
Outdoor dust inhalation	N	N	N	N	material buried at 0.4-0.6m bgs.
Indoor dust inhalation	N	N	N	N	
Indoor inhalation of vapours	N	N	N	N	No volatile chemicals detected in
Outdoor inhalation of vapours	Ν	Ν	N	N	Phase 2 investigations above assessment criteria
Vegetatble/ fruit ingestions	N	Ν	N	N	No vegetable/fruit grown on-site or off site in the down-gradient Buffer Zone area. Soil impacts not identified in previous studies in the Buffer Zone (ENVIRON, 2014a-j)
Groundwater			T		•
Dermal contact	Ν	Y	Ν	N	Shallow (~0.5-3mbgs) impacted
Incidential ingestion	N	Y	N	Ν	groundwater detected on-site. During times of flooding, groundwater exflitrates to the surface in the Buffer Zone and can flow to surface water bodies. Studies have shown that concentrations of fluoride and aluminium in surface waters in the Buffer Zone have shown that there have been no impacts on ecology at the downgradient receptor, Swamp Creek (ENVIRON, 2014a).
Potable ingestion	N	Ν	N	N	No current on-site abstraction wells fo potable use of groundwater.
Outdoor inhalation of vapours	N	Ν	N	N	No volatile chemicals detected in
Indoor inhalation of vapours	N	Ν	N	N	Phase 2 investigations above assessment criteria

Hydro Australia May 2015

Shallow Surface Soil	Potentially	Complete Source-Pat	Justification		
	Current & future on-site employees (non-intrusive)	Current & future on-site Intrusive Maintenance and Construction Workers	Recreational users of Kurri Kurri Speedway	Buffer Zone Ecological Receptors	
Groundwater to surface water pathways	Ν	Ν	N	N	Open accessible stormwater drains and ponds on-site are managed under the site's stormwater management system. During times of flooding, groundwater in the Buffer Zone can exfiltrate and flow to surface water bodies. Groundwater can also discharge to surface bodies through groundwater flowpaths. Studies or groundwater flowpaths. Studies or groundwater and surface water receptors in the Buffer Zone have shown that there have been no impacts on the ecology of the downgradient receptor, Swamp Creek (ENVIRON, 2013a), see Section 3.4.4 .
Irrigation pathways	na	na	N	N	No current on-site or off-site abstraction wells for irrigation purposes.
Sediment					
Dermal contact	N	Y	na	na	Impacted sediments detected in the
Incidential ingestion	Ν	Y	na	na	East Surge Pond and associated drainage lines on-site.
Outdoor inhalation of vapours	N	Ν	N	N	No volatile chemicals detected in
Indoor inhalation of vapours	N	Ν	N	N	Phase 2 investigations above assessment criteria

Notes: na: exposure pathway not applicable

10.2 Further Investigations

The following AECs and PAECs were not assessed as part of this Phase 2 ESA and require investigations in the future:

- AEC 15 West Surge Pond: Sampling of the sediment for soluble fluoride should be completed once the sediment is excavated and stockpiled.
- PAEC 27 Substations: Substations are currently live and in use and cannot be assessed until they are isolated. Assessment of each substation for Polychlorinated Biphenyls (PCBs) and Total Petroleum Hydrocarbons (TPH) should be completed once the substations are switched off, isolated and demolition has commenced.
- PAEC 30 Area East of the Clay Borrow Pit: The area has been covered with excess Virgin Excavated Natural Material (VENM) from the construction of the Hunter Expressway. Assessment of buried fill material in this area cannot be completed until the VENM has been removed.

10.2.1 Fluoride Impacts in Groundwater

As illustrated in **Table 10.2**, groundwater impacted with fluoride was identified as a concern for on-site maintenance and construction employees. Fluoride concentrations in groundwater ranged between 0.22 and 43mg/L over two groundwater monitoring rounds, exceeding the ENVIRON (2013) site-specific preliminary screening criteria of 1.5mg/L for recreational use. As the screening criterion is for recreational use, a health risk assessment and derivation of site-specific criterion for fluoride for maintenance and construction employees is recommended.

10.3 Remediation

Based on the contamination identified during the 2012 Phase 2 ESA and the current investigations, ENVIRON recommends remediation of contamination at the AECs included in **Table 10.3**.

Based on the information presented in **Table 10.3**, a Remedial Action Plan should be developed for the AECs. The Remedial Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

Hydro Australia May 2015

No.	PAEC	Approximate Volume (m ³)	Media	Contaminants	Mechanism for Contamination	Remediation Required		
1	Capped Waste Stockpile	NA	Soil and groundwater	The Capped Waste Stockpile has been assessed separately to this Phase 2 ESA.				
2	Anode Waste Pile	Approximately 1,300m ³	Soil	PAHs	Stockpiling of anodes	 Delineation of the hotspot following recycling of anode stockpile Remediation of shallow fill material following delineation 		
4	Diesel Spray Area	Unknown	Soil	PAHs	Use of contaminated soils as fill material.	-Delineation of PAH contaminated fill material required prior to remediation		
5	Drainage Lines	Approximately 200m ³	Sediment	PAHs	Accumulation of PAH contaminated sediments in the drainage lines around the Anode Waste Pile and the Capped Waste Stockpile.	-Remediation of PAH contaminated sediments		
6	East Surge Pond	Approximately 2,500m ³	Sediment	PAHs	Accumulation of PAH contaminated sediments.	-Remediation of PAH contaminated sediments		

No.	PAEC	Approximate Volume (m ³)	Media	Contaminants	Mechanism for Contamination	Remediation Required
8	Carbon Plant (western end only)	Approximately 1000m ³	Accessible soil	PAHs	Accumulation of PAHs associated with dust from the Carbon Plant.	-Remediation of PAH contaminated shallow soils in garden beds and grassed areas to the south of the western end of the Carbon Plant.
26	Bake Furnace Scrubber	Approximately 1,000m ³	Soil	PAHs	Accumulation of waste from the scrubber in surface soils.	- Delineation and remediation of the PAH hot spot at HA115 -Remediation of PAHs in surface soils in grassed areas beneath the scrubber duct work.
29	Area East of Playing Fields	Approximately 10,000m ³	Soil	PAHs	Burial of wastes in fill.	 -Excavation and segregation of wastes for recycling and disposal to remove aesthetic impacts) -Validation of the removal of the PAH hot spot from test pit TP117
30	On-site groundwater	NA	Groundwater	Fluoride, aluminium, PAHs	Leaching of contaminants into groundwater	-Complete Health Risk Assessment to assess whether remediation is required

11 Conclusions and Recommendations

ENVIRON Australia Pty Limited (ENVIRON) was commissioned by Hydro Aluminium Kurri Kurri Limited (Hydro) to complete Stage 2 of a Phase 2 Environmental Site Assessment (ESA) at the Hydro Kurri Kurri Aluminium Smelter located of Hart Road, Loxford, New South Wales. The site incorporates 60ha of Smelter Site and 2,000ha of surrounding buffer land. The initial Stage 1 phase of work was completed in November 2012. The objective of the Stage 2 investigations was to build upon the results of the Stage 1 in assessing the presence of contamination at the Smelter site and to assess the suitability of the site for the purposes of General Industrial (IN1), Heavy Industrial (IN3) and Environmental Conservation (E2) landuse.

The scope of work for the Stage 2 investigations included the following:

- Review of previous investigations and identification of data gaps;
- Development of a Sampling, Analysis and Quality plan (SAQP);
- Soil sampling at five areas of environmental concern (AECs) identified from the Stage 1 investigations and five new potential areas of environmental concern (PAECs);
- The installation of seven new groundwater wells at three of the AECs;
- Groundwater sampling of the seven new and 17 existing wells;
- Laboratory analysis for soil and groundwater samples;
- Assessment of laboratory results against site criteria;
- Refinement of the conceptual site model (CSM);
- Identification of additional site investigation works to refine the CSM; and
- Assessment of areas requiring remediation.

The CSM assumed a future industrial site landuse, and considered off-site receptors in the down-hydraulic gradient area. The following complete source-pathway-receptor linkages were identified in the CSM:

- Inhalation of dust generated from surface soil impacts by current and future on-site industrial adult employees;
- Direct contact with impacted soil and groundwater by current and future on-site intrusive maintenance workers;
- Direct contact with impacted sediment by current and future on-site industrial employees.

In order to further refine the CSM, a number of targeted investigations are required to be performed at the West Surge Pond, the Sub-Stations and the Area East of the Clay Borrow Pit.

Based upon the source-pathway-receptor linkages identified in the refined CSM, surface soil and sediment remediation at the following AECs is required:

- Capped Waste Stockpile: This AEC has been assessed separately to this investigation;
- Anode Waste Pile: PAH contamination in surface soils to 0.2 bgs. Delineation and remediation of PAH hot spot at MW103;
- Diesel Spray Area: PAH contamination of fill material at 0.4m to 0.6m bgs. Delineation and remediation required;
- Drainage Lines: PAH contamination of sediments in drainage lines around the Capped Waste Stockpile and the Anode Waste Pile;
- East Surge Pond: PAH contamination of sediments;
- Carbon Plant: PAH contamination of shallow soils to 0.4m bgs in grassed areas and gardens beds at the western end of the Carbon Plant;
- Bake Furnace Scrubber: PAH contamination in shallow soils to 0.3m bgs in grassed areas below the scrubber duct work. Delineation of remediation of PAH hot spot at HA115; and
- Area east of the Playing Fields: Buried wastes to be remediated for aesthetic reasons. Delineation and remediation of PAH hot spot identified in south east corner at TP117.

Vertical delineation of the soil contamination at each AEC was completed as part of the Stage 2 investigations. The majority of the soil contamination identified is PAH (primarily benzo(a)pyrene) contamination in fill, which has not extended into the underlying alluvial sands and has not impacted groundwater. Lateral delineation of soil contamination has been completed to the extent practicable at this time given buildings, stockpiles, roads and services limit potential sampling locations. Lateral delineation of soil contamination and hot spots will be required at some AECs (e.g. Anode Waste Pile, Diesel Spray Area) prior to remediation.

ENVIRON recommends the preparation of a Remedial Action Plan (RAP) for the Smelter Site to develop remediation and validation plans for each of the seven AECs identified above. The Remediation Action Plan should be prepared in accordance with NSW EPA (2011) Guidelines for Consultants Reporting on Contaminated Sites. As remediation is likely to occur following or during the demolition of the buildings on the Smelter Site, the RAP should consider impacts to surface soils that may occur during demolition. Validation sampling programs for each area should consider contamination identified in this Phase 2 ESA, as well as additional contamination impacts to surface soils that may occur through demolition.

ENVIRON recommends a health risk assessment be completed to derive site-specific criterion for fluoride for maintenance and construction employees and assess the requirement for remediation of fluoride in groundwater beneath the Smelter Site.

Hydro has separately engaged an EPA-accredited Site Auditor to assess the appropriateness of the Remedial Action Plan and to assess if the site can be made suitable for the proposed landuse by implementation of the Remedial Action Plan. Following the completion of the remediation, the Site Auditor will provide a Site Audit Statement certifying that the site is suitable for the proposed use.

12 References

AECOM (2 June 2013) 'Hydro Aluminium – 2012 Annual Environmental Management Review'

ANZECC & ARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministries of the Environment (2010) Candian Soil Quality Guidelines, Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects) Scientific Criteria Document (revised)

ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter' (2012a)

ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter' (2012b)

ENVIRON (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter' (2013a)

ENVIRON (2 April 2013) 'Preliminary Health Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford' (2013b)

ENVIRON (22 October 2013) 'Phase 1 ESA, Hydro Kurri Kurri Aluminium Smelter' (2013c)

ENVIRON (April 2014) 'Phase 2 Environmental Site Assessment, Parcel 9' (2014a)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 2' (2014b)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 5' (2014c)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 17' (2014d)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 18' (2014e)

ENVIRON (May 2014) 'Phase 2 Environmental Site Assessment, Parcel 7' (2014f)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 3'(2014g)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 6' (2014h)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 8' (2014i)

ENVIRON (June 2014) 'Phase 2 Environmental Site Assessment, Parcel 16' (2014j)

ENVIRON (June 2014) 'Hydro Aluminium Kurri Kurri, Sampling, Analysis and Quality Plan' (2041k)

ENVIRON (24 July 2014) Remedial Action Work Plan, Clay Borrow Pit Area, Kurri Kurri, NSW'

National Environment Protection Council (1999) National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 1999)

National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM 2013)

National Health and Medical Research Council (2008) Guidelines for Managing Risks in Recreational Water

National Health and Medical Research Council (2011) Australian Drinking Water Guidelines

NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme (Second Edition)

NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA (1994) Guidelines for Assessing Service Station Sites

Figures

C ENVIRON

JOB NO: AS130383

DATE: August 2014

Google Earth Pro: Licence valid till 5/2/15.

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 4 – Diesel Spray Area

C ENVIRON

JOB NO: AS130383

DATE: August 2014

📢 ENVIRON

JOB NO: AS130383

DATE: August 2014

Soil sampling locations with PAHs > guidelines

- Approximate extent of shallow soil contamination
 - Approximate Scale 1cm:5m

FIGURE 10

FIGURE 11

▲ 2014 soil sampling locations

P117 Soil sampling location with PAHs > guidelines

Approximate Scale 1cm:9m

Google Earth Pro: Licence valid till 5/2/15.

PAEC 29 – Area East of Playing Fields

FIGURE 12

Tabulated Laboratory Results for Soil and Groundwater

AS130383

TABLE LR1 Soil Analytical Results for AEC 2 Anode Waste Pile (mg/kg)

TABLE LR1 Soil Analytica	I Results 1	or AEC 2 And	de Waste Pil	e (mg/kg)													
Sample Identification					MW12	MW12	MW13	SB103	SB103	SB104	SB104	SB105	SB105	MW103	MW103	MW104	MW104
Sample Depth (m)	PQL	HIL D ^A	EIL C/I ^B	ESL C/I	0-0.2	0.4-0.6	0.2-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Date		HIL D	EIL C/I	ESL C/I	17-Apr-12	17-Apr-12	17-Apr-12	30-Jun-14									
Sample Profile					FILL	FILL	FILL	FILL	ESTUARINE	FILL							
PAEC Sampled					AWP												
Sample collected by					KJG												
Metals																	
Aluminium	50	NL*	-	-	55800	3260	36700	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	10.1	1	10.5	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	1.4	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	46.8	4.4	10.9	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	41.1	0.3	6.7	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	103	3.4	79.9	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	34.1	2.6	7.5	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	304	1	21.3	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.1	730	-	-	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	890	24	1077	270	970	110	410	430	64	45
Fluoride (total)	40	-	-	-	47100	1010	17700	-	-	-	-	-	-	-	-	-	-
Non Metallic Inorganics																	
Total Cyanide (free)	1	1500	-	-	<1	1	<1	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydroca	rbons (PAH	l)															
Naphthalene	0.5	-	370	-	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	< 0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	1.4	<0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Fluorene	0.5	-	-	-	0.9	<0.5	<0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Phenanthrene	0.5	-	-	-	15.2	<0.5	5	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Anthracene	0.5	-	-	-	4.1	<0.5	1.1	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Fluoranthene	0.5	-	-	-	56.5	<0.5	20.4	13	13	13	13	13	13	13	13	13	13
Pyrene	0.5	-	-	-	52.2	<0.5	20.5	12	12	12	12	12	12	12	12	12	12
Benz(a)anthracene	0.5	-	-	-	52.6	<0.5	17.3	11	11	11	11	11	11	11	11	11	11
Chrysene	0.5	-	-	-	74.3	<0.5	17	11	11	11	11	11	11	11	11	11	11
Benzo(b)&(k)fluoranthene	1	-	-	-	88.6	<0.5	26.6	25	25	25	25	25	25	25	25	25	25
Benzo(k)fluoranthene	0.5	-	-	-	31.2	<0.5	11.8	-	-	-	-	-	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	29.4	<0.5	16.1	15	< 0.05	18	21	37	12	28	160	24	0.21
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	20.7	<0.5	11.4	14	<0.1	16	18	32	8.2	27	120	18	0.2
Dibenz(a,h)anthracene	0.5	-	-	-	7.2	<0.5	2.5	1.4	<0.1	2	1.7	5.2	0.9	4.1	22	2.7	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	24	<0.5	14.5	12	<0.1	13	16	27	6.6	21	100	15	0.2
Benzo(a) pyrene TEQ		40			56.9	<0.5	25.6	21	<0.5	26	30	55	16	42	250	34	<0.5
Sum of reported PAH		4000			458	<0.5	165	120	NIL (+)VE	140	180	300	85	210	1400	150	1.7

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR2 Soil Analytical Results for AEC 4 Diesel Spray Area (mg/kg)

Sample Identification					SB17	SB18	MW19	MW19	SB111	SB111	SB112	SB112	SB112	SB113	SB113	SB114	SB114
Sample Depth (m)	PQL		_		0.3-0.4	0.5-0.6	FILL 1	FILL 2	0.0-0.1	0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1	0.4-0.5	0.0-0.1	0.4-0.5
Date	, ac	HIL D ^A	EIL C/I ^B	ESL C/I	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	01-Jul-14								
Sample Profile					FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled					DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA	DSA
Sample collected by					KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Polycyclic Aromatic Hydroca	rbons (PAH)															
Naphthalene	0.5	-	370	-	<0.5	<0.5	<4.0	<0.5	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	<0.5	<0.5	<4.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.5	3.8	8.4	1.6	<0.1	<0.1	<0.1	2	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.5	-	-	-	<0.5	2.2	4.2	0.8	<0.1	<0.1	<0.1	0.9	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.5	-	-	-	<0.5	30.2	46.7	7.8	<0.1	0.4	<0.1	8.1	<0.1	0.2	<0.1	0.1	<0.1
Anthracene	0.5	-	-	-	<0.5	6.3	9.6	1.6	<0.1	<0.1	<0.1	1.7	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.5	-	-	-	<0.5	59.7	137	21.6	0.4	1.5	<0.1	30	<0.1	0.4	0.1	1	0.2
Pyrene	0.5	-	-	-	<0.5	59.1	133	21.7	0.5	1.6	<0.1	32	<0.1	0.4	0.1	1	0.2
Benz(a)anthracene	0.5	-	-	-	<0.5	46.7	103	24.3	0.3	1.2	<0.1	29	<0.1	0.3	<0.1	1.4	0.2
Chrysene	0.5	-	-	-	<0.5	45.6	97.3	23.5	1	1.1	<0.1	29	<0.1	0.6	0.1	2.7	0.2
Benzo(b)&(k)fluoranthene	1	-	-	-	<0.5	60.3	140	31	0.9	2.3	<0.2	64	<0.2	0.9	0.2	4.1	0.5
Benzo(k)fluoranthene	0.5	-	-	-	<0.5	21.2	47.7	10	-	-	-	-	-	-	I	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	<0.5	43.4	<u>101</u>	19.2	0.48	1.5	0.06	38	<0.05	0.42	0.12	0.96	0.16
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	<0.5	41.6	57.5	17.5	0.3	1.1	<0.1	28	<0.1	0.3	<0.1	0.6	0.1
Dibenz(a,h)anthracene	0.5	-	-	-	<0.5	8.8	12.8	4.6	<0.1	0.1	<0.1	3.8	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	<0.5	46.1	65	19.9	0.4	1	<0.1	23	<0.1	0.3	<0.1	0.8	0.1
Benzo(a) pyrene TEQ		40	-	-	<0.5	70.1	150.2	31.6	1	2	<0.5	55	<0.5	1	<0.5	2	<0.5
Sum of reported PAH	-	4000	-	-	<0.5	475	963	205	4.3	12	0.06	290	NIL (+)VE	3.7	0.66	13	1.7

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

TABLE LR3 Soil Analytical Results for AEC 8 Carbon Plant

TABLE LR3 Soil Analytical	Results IC	or AEC 8 Ca	irbon Plant																	
Sample Identification					SB11	SB12	SB13	MW14	MW15	MW16	MW16	MW17	MW17	MW18	MW18	SB108	SB109	SB110	MW105	MW105
Sample Depth (m)	PQL	LUL DA	EIL C/I ^B	ESL C/I	0.2-0.4	1.8-1.9	1.0-1.2	0-0.4	0.1-0.4	0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0	0-0.2	0.8-1.0	0-0.1	0-0.1	0-0.1	0.15-0.25	0.3-0.4
Date		HIL D ^A	EIL C/I	ESE C/I	17-Apr-12	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	18-Apr-12	18-Apr-12	18-Apr-12	18-Apr-12	19-Apr-12	19-Apr-12	30-Jun-14	01-Jul-14	01-Jul-14	30-Jun-14	30-Jun-14
					-												-		-	
Sample Profile					FILL	FILL	FILL	FILL	FILL	FILL	ESTUARINE	FILL	ESTUARINE	FILL	ESTUARINE	FILL	FILL	FILL	FILL	FILL
PAEC Sampled					Carbon Plant															
Sample collected by					KJG															
Metals																				
Aluminium	50	NL*	-	-	9550	10300	14200	14700	13800	7740	3180	6740	1310	32700	8210	-	-	-	-	-
Arsenic	1	3000	160	-	10.9	16.5	3.4	6.3	5.1	0.9	1.2	0.8	0.2	12	1.8	-	-	-	-	-
Cadmium	0.1	900	-	-	<0.1	<0.1	0.1	0.1	2.4	<0.1	<0.1	<0.1	<0.1	0.4	<0.1	-	-	-	-	-
Chromium	1	3600	320**	-	7.3	7.9	52.1	25.5	18	5	3.2	5.3	1.4	26.9	6	-	-	-	-	-
Copper	2	240000	210**	-	13.6	14.2	16	15.6	44.5	7.8	0.2	4.2	0.3	21.9	0.3	-	-	-	-	-
Nickel	1	6000	140**	-	11	12.4	34.4	53	27.8	6.4	1.8	2	0.6	51.6	4.6	-	-	-	-	-
Lead	2	1500	1800	-	6.3	6.5	25.8	9.2	44.4	3.6	1.8	37	0.6	20.6	3.3	-	-	-	-	-
Zinc	5	400000	440**	-	51.6	53.4	178	70.4	115	18.8	0.6	43.4	0.5	288	1.4	-	-	-	-	-
Mercury	0.05	730	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (total)	40	-	-	-	240	150	1960	2350	3950	700	60	200	80	7740	650	-	-	-	-	-
Non Metallic Inorganics																				
Total Cyanide	1		-	-	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1	-	-	-	-	-
Polycyclic Aromatic Hydrocarl	bons (PAH)																			
Naphthalene	0.5	-	370	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	4	0.2
Acenaphthylene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	1.9	<0.5	0.1	0.1	<0.1	7.3	0.4
Fluorene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.1	<0.1	<0.1	2.7	0.2
Phenanthrene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	<0.5	16.6	<0.5	1.3	0.7	<0.1	3.4	0.2
Anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	0.3	0.3	<0.1	0.9	<0.1
Fluoranthene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	3.8	<0.5	<0.5	<0.5	<0.5	41.2	<0.5	6	2.2	<0.1	5.9	0.1
Pyrene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	3	<0.5	<0.5	<0.5	<0.5	38.3	<0.5	6	2	<0.1	4.6	0.1
Benz(a)anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	0.7	5.3	<0.5	<0.5	<0.5	<0.5	47.1	<0.5	3.4	0.8	<0.1	0.8	<0.1
Chrysene	0.5	-	-	-	<0.5	<0.5	<0.5	0.8	8.1	<0.5	<0.5	<0.5	<0.5	50.3	<0.5	3.8	0.8	0.1	0.9	<0.1
Benzo(b)&(k)fluoranthene	1	-	-	-	<0.5	<0.5	<0.5	1.1	9.6	<0.5	<0.5	<0.5	<0.5	67.2	<0.5	10	1.5	<0.2	1.3	<0.2
Benzo(k)fluoranthene	0.5	-	-	•	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<0.5	20.4	<0.5	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	<0.5	<0.5	<0.5	0.6	2.1	<0.5	<0.5	<0.5	<0.5	33.6	<0.5	4.9	0.88	<0.05	0.44	<0.05
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	<0.5	<0.5	<0.5	0.6	1.5	<0.5	<0.5	<0.5	<0.5	29.2	<0.5	4.7	0.6	<0.1	0.4	<0.1
Dibenz(a,h)anthracene	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	7.7	<0.5	0.5	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.5	-	-	-	<0.5	<0.5	<0.5	0.6	1.8	<0.5	<0.5	<0.5	<0.5	28.8	<0.5	4.1	0.6	<0.1	0.3	<0.1
Benzo(a) pyrene TEQ		40	-	-	<0.5	<0.5	<0.5	1.87	4.5	<0.5	<0.5	<0.5	<0.5	58.5	<0.5	7	1	<0.5	1	<0.5
Sum of reported PAH		4000	-	-	<0.5	<0.5	<0.5	5.8	38.6	0.8	<0.5	<0.5	<0.5	387	<0.5	46	10	0.1	33	1.2

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR3 Soil Analytical Results for AEC 8 Carbon Plant

TABLE LR3 Soil Analytical	Results f	or AEC 8 Ca	arbon Plan	t														
Sample Identification					MW106	MW107	HA106	HA106	HA107	HA107	HA108	HA109	HA109	HA110	HA110	HA111	HA111	HA112
Sample Depth (m)	PQL	HIL D ^A	EIL C/I ^B	ESL C/I	0.0-0.1	0.15-0.25	0.1	0.15	0.1	0.2	0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0-0.1	0.3-0.4	0.1
Date		HIL D	EIL C/I	ESE C/I	30-Jun-14	30-Jun-14	25-Jun-14											
					-		•		-		-	•		•	-	•	•	
Sample Profile					FILL													
PAEC Sampled					Carbon Plant													
Sample collected by					KJG													
Metals																		
Aluminium	50	NL*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	0.05	730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (total)	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Non Metallic Inorganics																		
Total Cyanide	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polycyclic Aromatic Hydrocar	bons (PAH)																
Naphthalene	0.5	-	370	-	<0.1	<0.1	<0.1	<0.1	1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.5	-	-	-	<0.1	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.5	-	-	-	<0.1	<0.1	0.6	0.7	4.3	8.3	0.4	0.4	0.2	1.5	0.1	1.2	1.1	0.2
Fluorene	0.5	-	-	-	<0.1	<0.1	0.3	0.3	2.6	3.6	0.2	0.2	<0.1	1	<0.1	0.8	0.4	0.1
Phenanthrene	0.5	-	-	-	0.1	<0.1	5.5	6.3	24	68	3.5	3.4	1.5	15	1.8	12	12	2.4
Anthracene	0.5	-	-	-	<0.1	<0.1	1.2	1.3	5.7	11	0.8	0.9	0.4	3.8	0.5	3.1	3.7	0.6
Fluoranthene	0.5	-	-	-	0.6	<0.1	19	20	76	220	12	11	4.5	43	7.8	37	46	9.3
Pyrene	0.5	-	-	-	0.6	<0.1	19	19	72	220	12	10	4.5	40	7.8	35	46	9
Benz(a)anthracene	0.5	-	-	-	0.7	<0.1	18	14	70	150	9	10	2.6	40	5.5	36	34	9.3
Chrysene	0.5	-	-	-	0.9	<0.1	19	13	70	130	9.3	10	2.5	41	5.5	37	34	9.8
Benzo(b)&(k)fluoranthene	1	-	-	-	2.4	<0.2	46	30	170	290	22	25	5.6	96	13	86	76	25
Benzo(k)fluoranthene	0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzo(a) pyrene	0.5	-	-	72 ^C	0.72	< 0.05	25	18	98	180	13	14	3.7	55	8.1	50	47	14
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	0.7	<0.1	19	15	63	150	9.1	10	2.4	41	5.8	38	36	10
Dibenz(a,h)anthracene	0.5	-	-	-	0.1	<0.1	2.7	2	15	16	0.9	1.7	0.3	9.4	0.7	8.4	4.4	1.4
Benzo(g,h,i)perylene	0.5	-	-	-	0.7	<0.1	18	14	59	130	8.9	9.7	2.3	37	5.5	33	32	9.2
Benzo(a) pyrene TEQ	1	40	-	-	1	<0.5	36	26	140	260	18	21	5	82	11	75	67	20
Sum of reported PAH		4000	-	-	7.6	NIL (+)VE	190	150	730	1600	100	110	30	420	63	380	370	100

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^C Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinoge

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a conc

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Asse

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collec

TABLE LR4 Soil Analytical Results for AEC 11 Washdown Bay

Sample Identification		Guide	eline	SB9	SB9	MW11	SB101	SB101
Sample Depth (m)	PQL		EIL C/I ^B	0.3-0.4	0.6-0.8	0-0.2	0.0-0.1	0.3-0.4
Date		HIL D ^A	EIL C/I	16-Apr-12	16-Apr-12	16-Apr-12	30-Jun-14	30-Jun-14

Sample Profile				FILL	FILL	FILL	FILL	FILL
PAEC Sampled				Washbay	Washbay	Washbay	Washbay	Washbay
Sample collected by				KJG	KJG	KJG	KJG	KJG
Metals								
Aluminium	50	NL*	-	39800	12600	15000	-	-
Arsenic	1	3000	160	17.1	23.9	5.8	-	-
Cadmium	0.1	900	-	11.1	0.2	0.2	-	-
Chromium	1	3600	320**	59.5	18.8	23.7	-	-
Copper	2	240000	210**	82	62	36.3	-	-
Nickel	1	6000	140**	152	29.4	24.5	-	-
Lead	2	1500	1800	185	66.4	48	-	-
Zinc	5	400000	440**	578	621	420	-	-
Mercury	0.05	730	-	0.2	<0.1	<0.1	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	94	73
Fluoride (total)	40	-	-	39000	1230	960	-	-
Non Metallic Inorganics		•	•	•				
Total Cyanide	1	1500	-	-	-	<1	-	-

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR5 Soil Analytical Results for AEC 12 Pot Lines and PAEC 25 Dry Scrubbers

	arytical ite	Sulta IOI ALC	/ 12 I OL EIII		20 Diy Ociu	00013												
Sample Identification				SB1	SB2	SB3	SB4	SB115	SB116	SB116	SB117	SB117	SB118	SB118	SB119	SB119	SB120	SB121
Sample Depth (m)	PQL	HIL D ^A	EIL C/I ^B	0-0.05	0-0.05	0-0.05	0-0.05	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1	0.1-0.2	0.0-0.1	0.2-0.3	0.0-0.1	0.3-0.4	0.0-0.1	0.0-0.1
Date		HIL D	EIL C/I	12/04/2012	12/04/2012	12/04/2012	12/04/2012	01-Jul-14	01-Jul-14	01-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	01-Jul-14	01-Jul-14	01-Jul-14	01-Jul-14
			-															
Sample Profile				FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL	FIILL
PAEC Sampled				Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Pot Lines	Dry Scrubbers	Dry Scrubbers	Dry Scrubbers	Dry Scrubbers
Sample collected by				FR	FR	FR	FR	KG	KG	KG	KG							
Metals																		
Aluminium	50	NL*	-	53300	139000	138000	41700	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	4.5	28.9	8.8	14.6	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	0.7	1.8	1.4	0.8	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	26.8	35	14.8	36	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	21.1	280	18.9	89.8	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	98	159	166	65.7	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	25	430	28.7	247	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	229	5400	444	1210	-	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.05	730	-	<0.1	<0.1	<0.1	<0.1	-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	-	-	-	-	73	140	48	13	24	17	29	55	36	3.1	20
Fluoride (total)	40	-	-	13400	26400	41900	20900	-	-	-	-	-	-	-	-	-	-	-

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

	aryticar ite	Juits IOI ALC		-														
Sample Identification				SB121	SB122	SB123	SB123	SB124	SB125	SB126	SB127	SB127	SB127	SB128	SB129	SB129	SB129	SB131
Sample Depth (m)	PQL	LIII DA	EIL C/I ^B	0.1-0.2	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1	0.1-0.2	0.4-0.6	0.0-0.1	0.0-0.1	0.1-0.2	0.9-1.0	0.0-0.1
Date		HIL D ^A	EIL C/I	01-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14	02-Jul-14									
				•														
Sample Profile				FIILL	ALLUVIAL	FILL	FILL	FILL	FILL	FILL								
PAEC Sampled				Dry Scrubbers														
Sample collected by				KG														
Metals																		
Aluminium	50	NL*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	2	240000	210**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	7.8	44	87	140	87	210	250	7.5	14	0.6	23	23	16	2.7	10
Fluoride (total)	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and T

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

				-															
Sample Identification				SB131	SB132	SB133	SB133	SB134	SB135	SB135	HA101	HA101	HA101	HA102	HA102	HA102	HA103	HA103	HA104
Sample Depth (m)	PQL	LIII DA		0.3-0.4	0.0-0.1	0.2-0.3	0.3-0.4	0-0.1	0-0.1	0.3-0.4	Surface	0.1	0.2	Surface	0.1	0.15	Surface	0.1	Surface
Date		HIL D ^A	EIL C/I ^B	02-Jul-14	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/2014	26/06/201						
Sample Profile				ALLUVIAL	FILL	ALLUVIAL	ALLUVIAL	FILL	FILL	FILL									
PAEC Sampled				Dry Scrubbers	Pot Lines	Pot Lines													
Sample collected by				KG	KW	KW													
Metals																			
Aluminium	50	NL*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
																			-

Cadmium	0.1	900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1
Copper	2	240000	210**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	1	6000	140**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	2	1500	1800	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	5	400000	440**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	52	2.3	5	27	2.3	22	36	28	180	62	53	78	120	140	180	90
Fluoride (total)	40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and T

TABLE LR5 Soil Analytical Results for AEC 12 Pot Line

Sample Identification				HA104	HA105	HA105	HA105
Sample Depth (m)	PQL		EIL C/I ^B	0.1	Surface	0.1	0.2
Date		HIL D ^A	EIL C/I ^в	26/06/2014	26/06/2014	26/06/2014	26/06/2014

Sample Profile							
PAEC Sampled				Pot Lines	Pot Lines	Pot Lines	Pot Lines
Sample collected by				KW	KW	KW	KW
Metals							
Aluminium	50	NL*	-	-	-	-	-
Arsenic	1	3000	160	-	-	-	-
Cadmium	0.1	900	-	-	-	-	-
Chromium	1	3600	320**	-	-	-	-
Copper	2	240000	210**	-	-	-	-
Nickel	1	6000	140**	-	-	-	-
Lead	2	1500	1800	-	-	-	-
Zinc	5	400000	440**	-	-	-	-
Mercury (inorganic)	0.05	730	-	-	-	-	-
Fluoride (soluble)	40	17000*	-	82	100	120	67
Fluoride (total)	40	-	-	-	-	-	-

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

Cells with '-' indicates testing was not completed or an appropriate screening crite

NL: indicates that the site-specific risk-based aluminium screening criteria for ind

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening L

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and T

TABLE LR6 Soil Analytical Results for PAEC 26 Ring furnace Scrubber

TABLE LKG SOIT Analytica	ai nesults i	IOI FALC 201	Ning furnace	Sciubbei																
Sample Identification					HA113	HA113	HA114	HA115	HA115	HA116	HA116	HA117	HA117	HA119	HA119	HA120	HA121	HA122	HA122	SB106
Sample Depth (m)	PQL	HIL D ^A	EIL C/I ^B	ESL C/I	0-0.1	0.3-0.4	0-0.1	0-0.1	0.2-0.3	0-0.1	0.3-0.4	0-0.1	0.25-0.35	0-0.1	0.3-0.4	0-0.1	0-0.1	0-0.1	0.3-0.4	0.0-0.1
Date		HIL D	EIL C/I	ESL U/I	27-Jun-14	30-Jun-14														
Sample Profile					FIILL															
PAEC Sampled					27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	27/06/2014	30/06/2014
Sample collected by					KW	KG														
Metals																				
Fluoride (soluble)	40	17000*		-	40	130	29	7.9	-	28	-	13	-	76	130	13	17	39	68	38
Polycyclic Aromatic Hydroca	arbons (PAF	H)																		
Naphthalene	0.1	-	370	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.9	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	-	-	-	2.7	0.9	0.4	16	2.2	4.2	0.2	4	<0.1	5.6	1.5	1.4	0.1	0.4	0.7	<0.1
Anthracene	0.1	-	-	-	0.7	0.3	<0.1	3.5	0.6	0.8	<0.1	1.3	<0.1	1	0.4	0.4	<0.1	<0.1	0.2	<0.1
Fluoranthene	0.1	-	-	-	15	3.2	3.1	210	40	41	3.4	38	0.3	17	5.8	12	1.2	2.4	2.6	0.2
Pyrene	0.1	-	-	-	14	3.1	3	240	50	41	3.4	38	0.3	16	5.6	11	1.2	2.3	2.5	0.3
Benz(a)anthracene	0.1	-	-	-	9.5	1.5	4.4	300	61	57	3.1	52	0.2	16	3.2	14	1.5	2.4	1.4	0.3
Chrysene	0.1	-	-	-	12	1.6	8.1	490	110	110	5.8	110	0.3	21	3.3	26	2.8	4.2	1.7	0.3
Benzo(b)&(k)fluoranthene	0.2	-	-	-	28	3.6	18	990	230	240	12	300	0.8	53	7.4	69	7.4	8.8	3.8	0.7
Benzo(a) pyrene	0.05	-	-	72 ^C	8.6	1.9	3.7	230	44	42	1.7	47	0.26	19	4.3	12	1.4	2.2	1.7	0.3
Indeno(1,2,3-c,d)pyrene	0.1	-	-	-	7.4	1.3	3.1	190	44	48	2.9	76	0.3	17	3.1	20	2.2	2.1	1.2	0.3
Dibenz(a,h)anthracene	0.1	-	-	-	1.4	0.2	0.8	60	15	12	0.7	25	<0.1	3	0.3	4.9	0.5	0.4	0.2	<0.1
Benzo(g,h,i)perylene	0.1	-	-	-	7.5	1.2	3.3	190	42	53	2.9	81	0.3	16	2.9	21	2.4	2.1	1.3	0.3
Benzo(a) pyrene TEQ	0.5	40	-	-	15	3	7	440	94	90	4	120	<0.5	31	6	28	3	4	3	<0.5
Sum of reported PAH		4000	-	-	110	19	47	2900	640	640	37	770	2.8	190	38	190	21	27	17	2.7

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^c Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

NL: indicates that the site-specific risk-based aluminium screening criteria for industrial soil is at a concentration greater than physically possible in soil, and therefore the criteria is defined as 'Non-Limiting' or NL.

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR7 Soil Analytical Results for PAEC 28 Playing Fields

Sample Identification	a results i	0.1 ALO 20	i laying riter	45			TP101	TP104	TP107	TP111	TP113	TP115	TP116
Sample Depth (m)	PQL		1		Management		0.2	0-0.2	0.5	0-0.3	0.4-0.5	0.4-0.5	0.1-0.3
Date	I QL	HIL D ^A	HSL D ^B	EIL C/IC	Limits ^D	ESL C/I ^E	23-Jun-14						
Date					Linits		23-Jun-14	23-Juli-14	23-Juli-14	23-Juli-14	23-Juli-14	23-Juli-14	23-Juli-14
Sample Profile							Estuarine	Estuarine	Estuarine	Fiill	Estuarine	Estuarine	Fill
PAEC Sampled							Playing Fields						
Sample collected by							KW						
								•					
Metals													
Arsenic	4	3000		160			<4	<4	<4	<4	<4	<4	63
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5
Chromium	1	3600		320**			3	12	<1	23	17	11	12
Copper	1	240,000		210**			2	2	<1	2	<1	<1	<u>590</u>
Lead	1	1500		1800			5	10	1	12	24	4	1600
Mercury	0.1	730		-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			8	5	1	6	3	1	5
Zinc	1	400,000		440**			32	36	3	35	5	2	5600
Fluoride (soluble)	0.5	17000*		-			45	16	19	22	<0.5	2.1	31
Polycyclic Aromatic Hydroca	arbons (PAH	i)											
Naphthalene	0.1			370			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1						0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)&(k)fluoranthene	0.2						<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a) pyrene	0.05					72 ^F	0.07	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-c,d)pyrene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a) pyrene TEQ	0.5	40					<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of reported PAH		4000					0.35	0.69	NIL (+)VE				
Total Petroleum Hydrocarbo	ns (TPH)												
TRH C6-C10	25				800		<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50				1000	170	<50	<50	<50	<50	<50	<50	<50
TRH >C16-C34	100				5000	2500	<100	<100	<100	<100	<100	<100	<100
TRH >C34-C40	100				10000	6600	<100	<100	<100	<100	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL				<50	<50	<50	<50	<50	<50	<50
Benzene, Toluene, Ethyl ben	ene, Xylene	(BTEX)	·		•								
Benzene	0.2		3			75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		NL			135	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2		NL			165	<2	<2	<2	<2	<2	<2	<2
Xylenes	1		230			180	<1	<1	<1	<1	<1	<1	<1
,													

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR8 Soil Analytical Results for PAEC 29 Area East of Playing Fields

TABLE LR8 Soil Analytica Sample Identification	I Results I	OI FAEC 29 P	Area East Or	Flaying Flei	us		TP117	TP118	TP119	TP120	TP122	TP123	TP124	TP125	TP126	TP127
Sample Depth (m)	PQL		1	1	Management		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	PQL	HIL D ^A	HSL D ^B	EIL C/I ^C	Limits ^D	ESL C/I ^E										
Date					Limits		25-Jun-14									
Sample Profile							FILL									
PAEC Sampled							EPF									
Sample collected by							KW									
. ,																
Metals																
Arsenic	4	3000		160			<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	1	3600		320**			11	5	3	3	5	7	7	7	5	6
Copper	1	240,000		210**			17	4	3	2	1	2	3	2	5	3
Lead	1	1500		1800			23	7	8	18	6	9	7	8	6	6
Mercury	0.1	730		-			0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			18	6	4	4	3	7	5	6	4	4
Zinc	1	400,000		440**			51	41	20	22	14	26	12	57	23	13
Fluoride (soluble)	40	17000*		-			340	22	28	17	26	23	17	27	15	19
Polycyclic Aromatic Hydroca	rbons (PAH)			<u> </u>											
Naphthalene	0.1		[370			1.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						7.6	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						2.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						130	0.2	0.1	<0.1	0.1	0.2	<0.1	0.1	0.1	0.2
Anthracene	0.1						33	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						390	0.5	0.5	0.2	0.5	0.7	0.1	0.4	0.4	0.6
Pyrene	0.1						380	0.4	0.5	0.2	0.5	0.7	<0.1	0.4	0.4	0.5
Benz(a)anthracene	0.1						180	0.2	0.4	0.1	0.3	0.4	<0.1	0.3	0.2	0.2
Chrysene	0.1						170	0.2	0.4	0.1	0.4	0.4	<0.1	0.3	0.2	0.2
Benzo(b)&(k)fluoranthene	0.2						320	0.4	1.2	0.2	0.8	1	<0.2	0.8	0.4	0.3
Benzo(a) pyrene	0.05					72 ^F	220	0.23	0.58	0.13	0.47	0.56	0.06	0.41	0.21	0.17
Indeno(1,2,3-c,d)pyrene	0.1						120	0.2	0.5	0.1	0.4	0.5	<0.1	0.4	0.2	0.1
Dibenz(a,h)anthracene	0.1						26	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						120	0.2	0.4	0.1	0.4	0.4	<0.1	0.3	0.1	0.1
Benzo(a) pyrene TEQ	0.5	40					310	<0.5	1	<0.5	1	1	<0.5	1	<0.5	<0.5
Sum of reported PAH		4000					2100	2.5	4.8	1	4	4.8	0.18	3.5	2.3	2.2
Total Petroleum Hydrocarbor	ns (TPH)															
TRH C6-C10	25				800		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50				1000	170	<50	<50	<50	<50	<50	61	<50	<50	<50	<50
TRH >C16-C34	100				5000	2500	5100	<100	<100	<100	<100	150	<100	<100	<100	<100
TRH >C34-C40	100				10000	6600	1000	<100	<100	<100	<100	<100	<100	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL				<50	<50	<50	<50	<50	61	<50	<50	<50	<50
Benzene, Toluene, Ethyl bene	ene, Xylene	(BTEX)														
Benzene	0.2		3			75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.5		NL			135	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	2		NL			165	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Xylenes	1		230			180	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

^F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil crite

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR9 Soil Analytical Results for PAEC 31 Storage Area west of Pot Line 3

TABLE LR9 Soil Analytica	I Results fo	or PAEC 31 S	torage Area	west of Pot I	_ine 3				1												
Sample Identification		L					TP128	TP128	TP129	TP130	TP130	TP131	TP132	TP132	TP133	TP134	TP135	TP135	TP136	TP137	TP137
Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EIL C/IC	Management	ESL C/I ^E	0.1	0.2	0-0.3	0-0.3	0.6-0.7	0.1-0.3	0.1	0.4	0.1-0.2	0.2	0.1	0.4	0.1	0.1	0.4
Date		THE D	HISE D		Limits ^D	L3L 0/1	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14	25-Jun-14
Sample Profile							FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL
PAEC Sampled							SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3	SAPL3
Sample collected by							KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW	KW
Metals																					
Arsenic	4	3000		160			30	6	6	<4	<4	7	20	<4	8	7	9	6	6	<4	5
Cadmium	0.4	900		-			<0.4	<0.4	<0.4	<0.4	<0.4	4.3	<0.4	<0.4	<0.4	0.4	0.6	<0.4	<0.4	<0.4	<0.4
Chromium	1	3600		320**			17	8	15	9	29	29	33	15	11	10	19	13	6	20	18
Copper	1	240,000		210**			94	12	8	12	1	48	44	2	22	28	140	12	10	24	<1
Lead	1	1500		1800			120	8	9	11	8	23	13	10	21	47	38	16	7	29	17
Mercury	0.1	730		-			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	1	6000		140**			18	14	47	54	8	130	27	3	16	21	17	6	10	12	4
Zinc	1	400,000		440**			510	48	47	86	15	240	130	8	140	220	210	47	42	76	22
Fluoride (soluble)	40	17000*		-			220	800	200	1463	120	87	58	0.9	1.1	110	110	4.6	13	2.2	7
Polycyclic Aromatic Hydroca	rbons (PAH)																				
Naphthalene	0.1	1		370			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1						<0.1	<0.1	0.4	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	0.1						<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	0.1						<0.1	<0.1	1	1	<0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	0.1						<0.1	<0.1	0.9	1	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benz(a)anthracene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	0.1						<0.1	<0.1	0.5	0.6	<0.1	0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)&(k)fluoranthene	0.2						<0.2	<0.2	1.1	1	<0.2	0.2	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a) pyrene	0.05					72 ^F	0.08	<0.05	0.64	0.56	< 0.05	0.11	0.06	< 0.05	0.11	< 0.05	0.05	< 0.05	< 0.05	0.08	< 0.05
Indeno(1,2,3-c,d)pyrene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1						<0.1	<0.1	0.5	0.4	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a) pyrene TEQ	0.5	40					<0.5	<0.5	1	1	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of reported PAH		4000					0.08	NIL (+)VE	6.2	5.7	NIL (+)VE	0.76	0.06	0.13	0.84	NIL (+)VE	0.05	NIL (+)VE	NIL (+)VE	0.18	NIL (+)VE
Total Petroleum Hydrocarbo		1000			1	I	0.00		0.2	0.1	1112 (1)12	0.10	0.00	0.10	0.01		0.00			0.10	112(1)12
TRH C6-C10	25	1	T	1	800		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C16	50	1	1	1	1000	170	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TRH >C16-C34	100			1	5000	2500	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	590	<100
TRH >C34-C40	100			1	10000	6600	<100	<100	<100	<100	<100	<100	<100	<100	120	<100	<100	<100	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25		260			215	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL	1	1	210	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
benzene, Toluene, Ethyl benz		(BTEY)		1	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	1	<.00	~ 30	~ 30	N 00	NOU	N 30	×30	< <u>50</u>	N 00	N 00	< <u>50</u>	N 00	N 00	N 00	N 30
Benzene	0.2		3	1	1	75	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	0.2	<u> </u>	3 NL	1		75 135	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	2	ł	NL	+	+	165	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	2				1			<2 <1					<2					<2 <1			
Xylenes		1	230	1	1	180	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^c NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

^P Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRON 2013)'

** EIL values calculated using site-specific CEC (7.26 meg/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

TABLE LR9 Soil Analytical Results for PAEC 31 Storage Area west of Pot Line 3

Sample Identification							TP138	TP139	TP140
Sample Depth (m)	PQL		usu sB	=	Management	For orF	0.2	0.1	0.1
Date		HIL D ^A	HSL D ^B	EIL C/I ^C	Limits ^D	ESL C/I ^E	25-Jun-14	25-Jun-14	25-Jun-14
		•		•			•		
Sample Profile							FILL	FILL	FILL
PAEC Sampled							SAPL3	SAPL3	SAPL3
Sample collected by							KW	KW	KW
, ,									
Metals									
Arsenic	4	3000	1	160			<4	4	<4
Cadmium	0.4	900		-			<0.4	<0.4	<0.4
Chromium	1	3600		320**			7	17	7
Copper	1	240,000		210**			<1	26	1
Lead	1	1500		1800			8	33	13
Mercury	0.1	730		-	1		<0.1	<0.1	<0.1
Nickel	1	6000	1	140**	1 1		3	15	5
Zinc	1	400.000	1	440**	1		41	280	7
Fluoride (soluble)	40	17000*		-	1		5.5	79	50
Polycyclic Aromatic Hydroca					· · · · ·				
Naphthalene	0,1	1	1	370			<0.1	0.4	<0.1
Acenaphthylene	0.1						<0.1	<0.1	<0.1
Acenaphthene	0.1						<0.1	0.6	<0.1
Fluorene	0.1		1	1			<0.1	0.6	<0.1
Phenanthrene	0.1						<0.1	2.3	<0.1
Anthracene	0.1						<0.1	0.3	<0.1
Fluoranthene	0.1						<0.1	3.8	<0.1
Pyrene	0.1						<0.1	3.4	<0.1
Benz(a)anthracene	0.1						<0.1	2.4	<0.1
Chrysene	0.1		1	1			<0.1	2.7	<0.1
Benzo(b)&(k)fluoranthene	0.2		1	1			<0.2	5.6	<0.2
Benzo(a) pyrene	0.05					72 ^F	< 0.05	2.9	<0.05
Indeno(1,2,3-c,d)pyrene	0.1		1	1		12	<0.1	2.1	<0.1
Dibenz(a,h)anthracene	0.1						<0.1	0.3	<0.1
Benzo(g,h,i)perylene	0.1		1	1			<0.1	1.9	<0.1
Benzo(a) pyrene TEQ	0.5	40					<0.5	4	<0.5
Sum of reported PAH		4000					NIL (+)VE	29	NIL (+)VE
Total Petroleum Hydrocarbo	ns (TPH)				1				
TRH C6-C10	25				800		<25	<25	<25
TRH >C10-C16	50	1	1		1000	170	<50	<50	<50
TRH >C16-C34	100	1	1		5000	2500	<100	<100	<100
TRH >C34-C40	100	1	1		10000	6600	<100	<100	<100
TRH C6-C10 - BTEX (F1)	25	1	260			215	<25	<25	<25
TRH >C10-C36 - Naph (F2)	50		NL	1	1 1	2.0	<50	<50	<50
benzene, Toluene, Ethyl benz		(BTEX)			1 1		100		
Benzene	0.2		3	-	1 1	75	<0.2	<0.2	<0.2
Toluene	0.2		NL			135	<0.2	<0.2	<0.2
Ethylbenzene	2		NL			165	<0.5	<0.5	<0.5
Xylenes	1		230	<u> </u>	+	180	<1	<1	<1
Луюнов			200	1	1	100	N N	N 1	

All results are in units of mg/kg.

^A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^c NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

^F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocar

Cells with '-' indicates testing was not completed or an appropriate screening criteria was not available

PQL = Practical Quantitation Limit.

Results shown in shading are in excess of the human health criteria

Results shown in underline are in excess of the ecological criteria

<LOR or <value = Less than the laboratory Limit of Reporting

* Site-specific fluoride (soluble) soil criteria derived from 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium (ENVIRI

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2

TABLE I P10 Groundwater Analytical Results (m/l)

TABLE LR10 Groundwater Analytic	cal Resu	lts (ug/L)																							
Sample Identification	PQL		Guide		0. 1	MW06	MW06	MW101			MW07	MW08	MW08	MW09				MW11	MW11	MW12	MW12			MW103	
Date		95% Fresh "	Recreational	Irrigation	Stock	2/5/12	10/7/14	9/7/14	9/7/14	1/5/12	9/7/14	1/5/12	9/7/14	30/4/12	9/7/14	30/4/12	9/7/14	1/5/12	9/7/14	30/4/12	9/7/14	1/5/12	9/7/14	9/7/14	9/7/14
PAEC Sampled							Background		Refuelling			Refuelling	Refuelling	FLS	FLS	FLS	FLS	Washbay	Washbay	AWP	AWP	AWP	AWP	AWP	AWP
Sample Appearance						Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Cloudy	Clear	Turbid	Clear	Milky	Clear	Brown	Clear	Cloudy	Brown	Clear	Clear
Sample collected by						KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Metals							100				1 10	100	1000			1 10				10.000	10	0.150	0.000		1 000
Aluminium pH>6.5 Arsenic	10	55 24	9000 100	5000	5000 500	10	180	<10	<10	30 13	<10	150 3	1200 <1	10	30	<10	2900	380 18	390	13,600 16	<10	2,150	2,500	7,700	1,300
Cadmium	0.1	24	20	100	10	<1	<0.1	<0.1	<0.1	0.2	<0.1	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.1	<0.1	<0.1	<0.1	0.2	<0.1
Chromium	1	27*	500	100	1000	<10	<1	<1	<1	<10	<1	2	1	<1	<1	<1	3	2	<1	29	<1	4	6	<1	6
Copper	1	12*	20,000	200	500	<10	1	4	2	10	<1	<1	<1	2	1	1	<1	2	<1	88	<1	1	<1	<1	3
Nickel	1	97*	200	200	1000	22	20	9	2	30	2	2	<1	16	14	19	24	5	6	110	15	2	<1	18	5
Lead	1	87* 70*	100	2000	100	<10	<1	<1 10	<1	<1	<1	<1	<1	<1 9	<1	<1	9	<1	<1	133	<1	<1	<1	<1	<1
Zinc Mercury	0.1	0.6	30,000 10	2000	20,000	78 <0.1	16 <0.05	<0.05	<0.05	28 <0.1	<0.05	12 <0.1	<1 <0.05	<0.1	<0.05	10 <0.1	< 0.05	28 <0.1	<0.05	699 <0.1	<0.05	25 <0.1	<0.05	92 <0.05	8 <0.05
Fluoride	100	0.0	1500	1000	2000	1000	220	460	3200	1300	1400	4900	6700	1000	560	1200	2100	3900	8300	1700	220	43000	40000	12000	13000
Non Metallic Inorganics	1		1	,																					
Free Cyanide	4	7	800			<4								<8		<4		<4		<8		7			
Total Cyanide	4	NA				<4								<8		<4		13		<8		40			
Total Petroleum Hydrocarbons (TPH) TPH C6-C9	20		1	1	1	1	-	<10	18	<20	<10	<20	<10			1	1		1	-		1		-	
TPH C10-C14	50							<50	<50	<20	<50	<50	<50												
TPH C15-C28	100							<100	<100	<100	<100	330	<100												
TPH C29-C36	100							<100	<100	<50	<100	<50	<100												
TPH C6-C36		LOR		LOR	LOR			<100	18	<50	<100	330	<100												
Polycyclic Aromatic Hydrocarbons (PA			1																						
Naphthalene	0.1	16	1		-	<0.1		l		<0.1	I	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	0.1		+		1	<0.1				<0.1	1	<0.1		<0.1		<0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	0.1		1		-	<0.1		l		<0.1	I	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Fluorene	0.1		+		1	<0.1				<0.1	1	<0.1		<0.1		<0.1		<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	0.1	2	+			<0.1				<0.1	I	<0.1		<0.1		<0.1	I	<0.1		<0.1	<0.1	0.9	<0.1	<0.1	<0.1
Anthracene	0.1	0.4	1		-	<0.1		l		<0.1	I	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1	0.2	<0.1	<0.1	<0.1
Fluoranthene	0.1	1.4				<0.1				<0.1		<0.1		0.2		<0.1		<0.1		0.3	<0.1	4.8	<0.1	<0.1	0.1
Pyrene	0.1					<0.1				<0.1		<0.1		0.2		<0.1		<0.1		0.3	<0.1	5	<0.1	<0.1	0.2
Benz(a)anthracene	0.1					<0.1				<0.1		<0.1		0.3		<0.1		<0.1		0.3	<0.1	4	<0.1	<0.1	<0.1
Chrysene	0.1					<0.1				<0.1		<0.1		0.6		<0.1		<0.1		0.2	<0.1	3.6	<0.1	<0.1	0.1
Benzo(b)&(k)fluoranthene	0.2					<0.2				<0.2		<0.2		1.8		<0.2		<0.2		0.8	<0.2	10.8	<0.2	<0.2	<0.2
Benzo(a) pyrene	0.05	0.2				< 0.05				< 0.05		< 0.05		< 0.05		< 0.05		<0.05		0.4	<0.05	6.46	<0.05	<0.05	0.1
Indeno(1,2,3-c,d)pyrene	0.1					<0.1				<0.1		<0.1		0.2		<0.1		<0.1		0.2	<0.1	3	<0.1	<0.1	0.1
Dibenz(a,h)anthracene	0.1					<0.1				<0.1		<0.1		0.1		<0.1		<0.1		<0.1	<0.1	1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	0.1					<0.1				<0.1		<0.1		0.4		<0.1		<0.1		0.2	<0.1	2.6	<0.1	<0.1	0.1
Semivolatile Organic Compounds (SV Organochlorine Pesticides (OCP)	OCS																								
alpha-BHC	2		1	1	1	<2	1	1		1	1	1		<2	1	<2	1		1			1	1	1	
HCB	2					<2								<2		<2									
delta-BHC	2					<2								<2		<2									
Heptachlor	2	0.09				<2								<2		<2									
Aldrin Heptachlor epoxide	2	0.001				<2 <2								<2 <2		<2 <2									
Chlordane	2	0.08				<2								<2		<2									
Endosulfan	2	0.2				<2								<2		<2									
Dieldrin	2	0.01				<2								<2		<2									
DDE	2	0.03				<2								<2		<2									
Endrin	2	0.02				<2								<2		<2									
DDD Endrin aldehyde	2					<2 <2								<2 <2		<2 <2									
Endosulfan sulfate	2					<2								<2		<2									
DDT	4	0.01				<4								<4		<4									
Organophosphorous Pesticides (OPP																									
Dichlorvos	2	0.15	+	1	1	<2	-				1	-		<2 <2	-	<2						1			
Dimethoate Diazinon	2	0.15	1	1	1	<2		1		1	1			<2	1	<2	1					1	1		
Chlorpyrifos-methy	2	0.01	1	1		<2					1			<2		<2	1								
Malathion	2	0.05				<2								<2		<2									
Fenthion	2	0.2				<2	1					1		<2		<2						1			
Chlorpyrifos	2		+			<2					I			<2		<2	I								┝───┤
Bromophos-ethy Chlorfenvinphos	2		+	1	1	<2 <2					1	-		<2 <2	-	<2 <2			<u> </u>			1			
Prothiofos	2		1	1	-	<2	+	-			-	+		<2	+	<2	-					-		1	
Ethion	2		1	1		<2					1			<2		<2	1								
Phenois																									
Total Phenolics	4	320	1	I		<4								<4		<4									
Phthalate Esthers	2	3700	1	1	1	<2	1	1		1	1	1		-2	1	-2						1	1	1	
Dimethylphthalate Diethylephthalate	2	3700	+		1	<2 <2								<2		<2	-					+			┝──┤
Nitrosamines			•		•	~~	•		-			•	-	~~		~~	-			-		•		•	·
Total Nitrosamines	2					<2								<2		<2									
Nitroaromatics and Ketones																									
Total Nitroaromatics and Ketone	2		1	I	1	<2	I	L		I	I	I		<2	I	<2						1	I	I	
Haloethers Total Haloethers	2			1	1	<2				1				<2	-	<2						-	1		
Chlorinated Hydrocarbons	1 4			1		. <4				· · · · · · · · · · · · · · · · · · ·				~4			·	_	·		·		· · · · · · · · · · · · · · · · · · ·		·
Total Chlorinated Hydrocarbon:	2		1		1	<2				1				<2		<2							1		
Anilines and Benzidines		_																							
Total Anilines and Benzidine:	2		1	I	-	<2								<2		<2						1			
Miscellaneous Compounds			1	1	1	<2	1	1		1	1	1		<2	1	<2						1	1	1	
Total Misscellaneous Compound:	2																								

 Total Misscellaneous Compound:
 2

 At results in cylic
 At results in cylic

 PDL - Practical Quadrativities Linell for Reaving Water Type
 Autoc 2005 Store Store Linell for Reaving Water Type

 Guidense in Altics are too wire intelbibly guidelines
 Mission Control (Control (Contr

TABLE LR10 Groundwater Analytic	al Resul	ts (ug/L)																	0.01	001	0.00	0.00	01.010					
Sample Identification Date	PQL	95% Fresh ^A	Guide Recreational		Stock	MW14 1/5/12	MW14 9/7/14	MW15 3/5/12	MW15 11/7/14		MW16 10/7/14	MW17 3/5/12	MW17 10/7/14	MW18 3/5/12	MW18 10/7/14	MW105 10/7/14	MW106 10/7/14		S3A 3/5/12	S3A 10/7/14	S3B 3/5/12	S3B 10/7/14	SUMP 3/5/12		MW19 10/7/14		MW20 M 10/7/14 2	1W21 2/5/12
PAEC Sampled						Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	DSA	DSA	DSA	DSA I	PRA
Sample Appearance						Yellow	Clear	Yellow	Clear	Clear	Clear	Cloudy	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Milky	Clear	Cloudy	Clear 0	Clear
Sample collected by						KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG I	KJG
Metals	10		0000	5000	5000	440	40	000	400	400	40	0.000	0.000	0.400	750	00	50	5.000	50	000	070	4.400	40	1	0		4500	00
Aluminium pH>6.5 Arsenic	10	55 24	9000 100	5000 100	5000 500	110 2	<10	200 <1	180	100 4	<10 <1	3,260	3,800 12	3,120	750 <1	20	50 2	5,000 <1	50 5	630 1	270	1400 5	40	-	8 <0.1		1500 2	20 <1
Cadmium	0.1	2*	20	10	10	0.3	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.2	<1	0.2	3		1		<0.1 <	<0.1
Chromium	1	27*	500	100	1000	<1 7	<1	<1	<1	1 4	<1	<1	4	3	<1	2	5	2	<1	1	1	2	<1 5		<1	-	2 .	<10
Copper Nickel	1	12* 97*	20,000 200	200	500 1000	10	3	7	<1 9	6	2 <1	10 14	8	2	<1 <1	4	<1	<1	6	<1 2	2	3	8		<1 7		<1 ·	<10 62
Lead	1	87*	100	2000	100	<1	<1	<1	<1	<1	<1	34	1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	-	<1	-	<1 •	<10
Zinc Mercury	5 0.1	70* 0.6	30,000 10	2000	20,000	32 <0.1	7 <0.05	37 <0.1	2	57 <0.1	1 <0.05	40 <0.1	6 <0.05	50 <0.1	4 <0.05	4 <0.05	15 <0.05	7 <0.05	31 <0.1	64 <0.05	24 <0.1	13 <0.05	38 <0.1	-	2 <0.05	-		70 <0.1
Fluoride	100	0.0	1500	1000	2000		850	4500	2700	1500	2300	800	1100	35000	17000	1100	7400	10000	12000	8200	14000	12000	4400		370	-	670 3	3000
Non Metallic Inorganics																												
Free Cyanide Total Cyanide	4	7 NA	800			<4		<4		<8 <8		<8 <8		<4					<4		<4		<4					
Total Petroleum Hydrocarbons (TPH)		1973				-		54		4 0		~							.4		.4							
TPH C6-C9	20										<10					240								<20		<20		
TPH C10-C14 TPH C15-C28	50 100										<50 <100					180 1400								<50 <100		<50 <100		
TPH C29-C36	100										<100					<100								<50		<50		
TPH C6-C36		LOR		LOR	LOR						<100					1820								<50		<50		
Polycyclic Aromatic Hydrocarbons (PAH Naphthalene	0.1	16				<0.1		<0.1		5.2	<0.1	0.2	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Acenaphthylene	0.1	10				<0.1		<0.1		<0.1	<0.1	22.9	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Acenaphthene	0.1					<0.1		<0.1		9.4	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Fluorene	0.1					<0.1		<0.1		1.1	<0.1	2	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Phenanthrene	0.1	2				<0.1		<0.1		0.6	<0.1	0.4	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Anthracene	0.1	0.4				<0.1		<0.1		0.6	<0.1	0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Fluoranthene Pyrene	0.1	1.4				0.1		<0.1 <0.1		0.7	<0.1	0.2	<0.1 <0.1	<0.1	<0.1 <0.1		<0.1		<0.1		<0.1 <0.1		<0.1 <0.1	<0.1 <0.1		<0.1 <0.1		
Benz(a)anthracene	0.1					<0.1		<0.1		0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Chrysene	0.1					<0.1		<0.1		0.2	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Benzo(b)&(k)fluoranthene	0.2					0.1		<0.2		0.3	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2		0.2		<0.2		<0.2	<0.2		<0.2		
Benzo(a) pyrene Indeno(1,2,3-c,d)pyrene	0.05	0.2				0.06		< 0.05		0.22	<0.05	< 0.05	< 0.05	0.06	<0.05		< 0.05		0.14		0.08		< 0.05	<0.05		< 0.05		
Dibenz(a,h)anthracene	0.1					<0.1 <0.1		<0.1 <0.1		<0.1	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1		<0.1		<0.1		<0.1 <0.1		<0.1 <0.1	<0.1 <0.1		<0.1		
Benzo(g,h,i)perylene	0.1					<0.1		<0.1		0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1		<0.1	<0.1		<0.1		
Semivolatile Organic Compounds (SVC																												
Organochlorine Pesticides (OCP) alpha-BHC	2			1	1 1			1	1	-	1	1	1			-	1	-	1	-		1						<2
HCB	2																											12
delta-BHC	2																											<2 <2 <2
Heptachlor Aldrin	2	0.09																										<2 <2
Heptachlor epoxide	2																											<2 <2
Chlordane	2	0.08																										<2
Endosulfan Dieldrin	2	0.2																										<2 <2
DDE	2	0.03																										<2
Endrin	2	0.02																										<2 <2
DDD Endrin aldehyde	2																											<2
Endosulfan sulfate	2																											<2
DDT Organophosphorous Pesticides (OPP)	4	0.01	I						ļ								ļ											<4
Dichlorvos	2							-			-								-			-						<2
Dimethoate Diazinon	2	0.15																										<2 <2
Chlorpyrifos-methy	2	0.01																										<2
Malathion	2	0.05						_	-		_	1	-	-	-		-		_		-	_	-				-	<2 <2
Fenthion Chlorpyrifos	2	0.2																										<2
Bromophos-ethy	2																											<2
Chlorfenvinphos	2												I															<2
Prothiofos Ethion	2											1		1	1								1					<2 <2
Phenois																												
Total Phenolics Phthalate Esthers	4	320																										<4
Dimethylphthalate	2	3700			I I																				1			<2 <2
Diethylephthalate	2	1000																										<2
Nitrosamines Total Nitrosamines	2				1								1												- 1			<2
Nitroaromatics and Ketones			цJ		1 I				ц	цJ		1				цJ	ц	цJ		цJ	ц							
Total Nitroaromatics and Ketone	2											1															Т	<2
Haloethers Total Haloethers	2				1 1									1	-								1				1	<2
Chlorinated Hydrocarbons																												
Total Chlorinated Hydrocarbon: Anilines and Benzidines	2			l	II	L		l	L		l		L	L	L		L		l		I	l	L					<2
Total Anilines and Benzidine:	2																											<2
Miscellaneous Compounds	2				1 1							1	1	1	1								1					<2
Total Misscellaneous Compounds	2		I		1 1				I			1	1	1	1			I		I			1	1				< <u>4</u>

 Total Misscellaneous Compound:
 2

 At results in cylic
 At results in cylic

 PDL - Practical Quadrativities Linell for Reaving Water Type
 Autoc 2005 Store Store Linell for Reaving Water Type

 Guidense in Altics are too wire intelbibly guidelines
 Mission Control (Control (Contr

TABLE LR11 Groundwater Analytical Results for VOCs and SVOCs

Date PQL 95% Fresh A Irrigation Stock 215/12 30/4/12 30/4/12 10/7/14 11/7/14 215/12 PAEC Sampled Background FLS FLS Carbon Plant Carbon Plant<	TABLE LR11 Groundwater Analytica	I Resu	ts for VOCs								
Date Triangetion Stock 215/12 304/12 304/12 107/14 117/14 215/12 PAEC Sampled Clear Cleavy FLS FLS Carbon Plant PRAC Sample Appearance Clear Clouvy Turbidu Clouvy Turbidu Clouvy Clear	Sample Identification	POI		Guideline	-	MW06	MW09	MW10	MW105	MW107	MW21
Sample Appearance Clear Cloudy Turbid Cloudy Clear Clear Sample collected by KJG KJG <td>Date</td> <td></td> <td>95% Fresh ^A</td> <td>Irrigation</td> <td>Stock</td> <td>2/5/12</td> <td>30/4/12</td> <td>30/4/12</td> <td>10/7/14</td> <td>11/7/14</td> <td>2/5/12</td>	Date		95% Fresh ^A	Irrigation	Stock	2/5/12	30/4/12	30/4/12	10/7/14	11/7/14	2/5/12
Sample collected by KJG	PAEC Sampled					Background	FLS	FLS	Carbon Plant	Carbon Plant	PRA
Compounds (VOCs) and Semivolatile Organic Compounds (SVOCs) Image: Compounds (VOCs) and Semivolatile Organic Compounds (SVOCs) Monocyclic Aromatics	Sample Appearance					Clear	Cloudy	Turbid	Cloudy	Clear	Clear
Monocyclic Aromatics C	Sample collected by					KJG	KJG	KJG	KJG	KJG	KJG
Benzene	Volatile Organic Compounds (VOCs) and	d Semiv	olatile Organi	c Compounds	(SVOCs)						
Other Monocyclic Aromatics <th< th=""> <</th<>	Monocyclic Aromatics										
Chlorinated Hydrocarbons	Benzene										<2
Cis-1, 2-dichloroethane <1	Other Monocyclic Aromatics					<2	<2	<2	<2	<2	<2
Chloroform <1	Chlorinated Hydrocarbons										
Chlorobenzene <1	Cis-1, 2-dichloroethane					<1	<1	<1	1	<1	<1
1,4-dichlorobenzene <1	Chloroform					<1	<1	<1	5	<1	<1
Organochlorine Pesticides (OCP) 2 <th2< th=""> <th2< th=""> 2 2 <t< td=""><td>Chlorobenzene</td><td></td><td></td><td></td><td></td><td><1</td><td><1</td><td><1</td><td>150</td><td><1</td><td><1</td></t<></th2<></th2<>	Chlorobenzene					<1	<1	<1	150	<1	<1
All OCPs 2 -2	1,4-dichlorobenzene					<1	<1	<1	9	<1	<1
Organophosphorous Pesticides (OPP) All OPPs 2 <2	Organochlorine Pesticides (OCP)										
All OPPs 2 <2	All OCPs	2				<2	<2	<2	<2	<2	<2
Sulfonated Compounds 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <td>Organophosphorous Pesticides (OPP)</td> <td></td>	Organophosphorous Pesticides (OPP)										
Carbon Disulfide 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4<	All OPPs	2				<2	<2	<2	<2	<2	<2
Funigants 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	Sulfonated Compounds										
Total Funigants 4 320 <4 <4 <4 <4 <4 <4 <4 Oxygenated Compounds 4 320 <4 <4 <4 <4 <4 <4 Total Oxygenated Compounds 4 320 <4 <4 <4 <4 <4 <4 Phenols Total Phenolics 4 320 <4 <4 <4 <4 Phenols Total Phenolics 4 320 <4 <4 <4 <4 Phthalate Esthers Dimethylphthalate 2 3700 <2 <2 <2 <2 <2 Diethylephthalate 2 1000 <2 <2 <2 <2 <2 Diethylephthalate 2 0 <2 <2 <2 <2 <2 Diat Nitrosamines 2 <2 <2 <2 <2 <2 <2	Carbon Disulfide	4	320			<4	<4	<4	<4	<4	<4
Oxygenated Compounds 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <td>Fumigants</td> <td></td>	Fumigants										
Total Oxygenated Compounds 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	Total Fumigants	4	320			<4	<4	<4	<4	<4	<4
Phenols 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <t< td=""><td>Oxygenated Compounds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Oxygenated Compounds										
Total Phenolics 4 320 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	Total Oxygenated Compounds	4	320			<4	<4	<4	<4	<4	<4
Phthalate Esthers Dimethylphthalate 2 3700 <2	Phenols										
Dimethylphthalate 2 3700 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Total Phenolics	4	320			<4	<4	<4	<4	<4	<4
Diethylephthalate 2 1000 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <td>Phthalate Esthers</td> <td></td>	Phthalate Esthers										
Nitrosamines 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Dimethylphthalate	2	3700			<2	<2	<2	<2	<2	<2
Total Nitrosamines 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Diethylephthalate	2	1000			<2	<2	<2	<2	<2	<2
	Nitrosamines										
	Total Nitrosamines	2				<2	<2	<2	<2	<2	<2
Nitroaromatics and Ketones	Nitroaromatics and Ketones										
Total Nitroaromatics and Ketones 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Total Nitroaromatics and Ketones	2				<2	<2	<2	<2	<2	<2
Haloethers	Haloethers								•		
Total Haloethers 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Total Haloethers	2				<2	<2	<2	<2	<2	<2
Anilines and Benzidines	Anilines and Benzidines										
Total Anilines and Benzidines 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	Total Anilines and Benzidines	2				<2	<2	<2	<2	<2	<2
Miscellaneous Compounds	Miscellaneous Compounds	•	•	-	-	•			•		
Total Misscellaneous Compounds 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	Total Misscellaneous Compounds	2				<2	<2	<2	<2	<2	<2

FLS - Flammable Liquids Store PRA - Pot Rebuild Area

All results in µg/L PQL = Practical Quantitation Limit. ^A ANZECC 2000 95% Protection Level for Receiving Water Type Guidelines in *italics* are low level reliability guidelines ^B NHMRC Australian Drinking Water Guidelines, 20110 Results shaded grey are in excess of the primary acceptance criteria: ANZECC 95%, NHMRC

TABLE LR12 Soil Quality A	surance/	Quality Co	ontrol Res	ults																				
Sample Identification	SB101	DUP A		SB108	DUP B		SB112	DUP C		SB119	DUP D		SB127	DUP E		SB127	DUP E1		SB116	DUP F		SB131	DUP G	
Sample Depth (m)	0.3	3-0.4		0-	-0.1	1				0.3	3-0.4	1	0.4	-0.6		0.4	-0.6		0-	0.1	1	0.3-	-0.4	1
Duplicate Type	Intrala	boratory	RPD %	Intrala	boratory	RPD %	Intralat	ooratory	RPD %	Intrala	boratory	RPD %	Intrala	boratory	RPD %	Interlat	ooratory	RPD %	Intralat	boratory	RPD %	Intralab	oratory	RPD %
Sample Profile	F	ILL.		F	ILL.		ESTU	ARINE		F	ILL.	1	ESTU	JARINE		ESTU	IARINE		F	ILL		ESTU.	ARINE	
Sample collected by	ł	KG		I	KG		k	G			KG		ł	KG		ŀ	G		ŀ	KG		ĸ	G	
															1									
Metals Arsenic																								
																							┝───┥	
Cadmium																							┝───┥	
Chromium																							┝───┥	
Copper		ļ			ļ						ļ												┝───┥	
Lead																							┝────┥	<u> </u>
Mercury																								
Nickel																								
Zinc																								
Fluoride	73	36	102.8							36	48	25.0	0.6	<u>0.25</u>	140.0	0.6	<u>0.5</u>	20.0	140	130	7.7	52	37	40.5
Polycyclic Aromatic Hydrocart	ons (PAH)																							
Naphthalene				0.50	0.50	0.0	0.50	0.50	0.0															
Acenaphthylene				0.50	0.50	0.0	0.50	0.50	0.0															
Acenaphthene				0.10	0.10	0.0	0.50	0.50	0.0															
Fluorene				0.50	0.50	0.0	0.50	0.50	0.0															
Phenanthrene				1.30	1.3	0.0	0.50	0.50	0.0															
Anthracene				0.30	0.3	0.0	0.50	0.50	0.0														í I	
Fluoranthene				6.00	5.0	20.0	0.50	0.50	0.0															
Pyrene				6.00	5.0	20.0	0.50	0.50	0.0															
Benz(a)anthracene				3.4	4.3	20.9	0.50	0.50	0.0															
Chrysene				3.8	5.5	30.9	0.50	0.50	0.0															
Benzo(b)&(k)fluoranthene				10	14	28.6	0.10	0.10	0.0															
Benzo(a) pyrene				4.90	6	18.3	0.025	0.025	0.0															
Indeno(1,2,3-c,d)pyrene				4.70	5.2	9.6	0.50	0.50	0.0															
Dibenz(a,h)anthracene		1		0.50	0.6	16.7	0.50	0.50	0.0		1				1									
Benzo(g,h,i)perylene				4.1	4.6	10.9	0.50	0.50	0.0															
Total Petroleum Hydrocarbons	(TPH)																							
TRH C6-C9															1									
TRH >C10-C14	1	1	1	Ì	1	Ì			1		1	Ì		1		Ì	Ì			1	Ì			
TRH >C15-C28																								
TRH >C29-C36	1	1	1	Ì	1	Ì			1		1	Ì		1		Ì	Ì			1	Ì			
Benzene		1			1						1				1									
Toluene		1			1						1				1									
Ethylbenzene		1			1						1													
Xylenes		1			1						1				1									
						L						L				L	L				L		I	I

Note all units in mg/kg

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

 SOLD identifies where KPD results

 intralaboratory

 >50
 >60

 where both sample results exceed ten x PQL

 >75
 >85

 where both sample results are within 5 to 10 x PQL

 >100
 >100

 where both sample results are within 2 to 5 x PQL

AD>2.5 * PQL where one or both sample results are <2 x PQL BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Sample Identification	SB133	DUP H		SB133	DUP H1		TP115	QA1		TP129	QA1A		TP136	QA2A		HA110	QA3A	
Sample Depth (m)	0.3	-0.4		0.3	-0.4		0.4	-0.5		0-	0.3		0.10	0-0.2		0.3	1-0.4	1
Duplicate Type	Intralab	oratory	RPD %	Interla	ooratory	RPD %	Intralat	oratory	RPD %		oratory	RPD %	Intralat	ooratory	RPD %	Intralat	boratory	RPD %
Sample Profile	ESTU	ARINE		ESTL	IARINE		ESTU	ARINE		FI	ĹĹ		FI	ĹĹ		F ¹	ILL ,	1
Sample collected by	к	G		ł	G		к	W		K	W		к	W		ĸ	W	
Metals																		
Arsenic							2	2	0.0	6	20	70.0	6	10	40.0			
Cadmium							0.2	0.2	0.0	0.2	0.2	0.0	0.2	0.2	0.0			
Chromium							11	12	8.3	15	15	0.0	6	8	25.0	1		
Copper							0.5	0.5	0.0	8	11	27.3	10	13	23.1			
Lead							4	5	20.0	9	9	0.0	7	8	12.5	1		
Mercury							0.05	0.05	0.0	0.05	0.05	0.0	0.05	0.05	0.0	1		1
Nickel							1	1	0.0	47	65	27.7	10	13	23.1	1		1
Zinc							2	2	0.0	47	50	6.0	42	41	2.4			
Fluoride	27	25	8.0	27	27.0	0.0	2.1	1.6	31.3	200	1098	81.8	13	6	116.7	1		1
Polycyclic Aromatic Hydrocarbo																		
Naphthalene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.05	0.0
Acenaphthylene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.05	0.0
Acenaphthene							0.50	0.50	0.0	0.1	0.50	80.0	0.50	0.50	0.0	0.1	0.2	50.0
Fluorene							0.50	0.50	0.0	0.5	0.50	0.0	0.50	0.50	0.0	0.05	0.1	50.0
Phenanthrene							0.50	0.50	0.0	0.4	0.20	100.0	0.50	0.50	0.0	1.8	3.1	41.9
Anthracene							0.50	0.50	0.0	0.1	0.50	80.0	0.50	0.50	0.0	0.5	0.8	37.5
Fluoranthene							0.50	0.50	0.0	1	0.5	100.0	0.50	0.50	0.0	7.8	14	44.3
Pyrene							0.50	0.50	0.0	0.9	0.4	125.0	0.50	0.50	0.0	7.8	14	44.3
Benz(a)anthracene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.5	8.3	33.7
Chrysene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.5	8.2	32.9
Benzo(b)&(k)fluoranthene							<u>0.10</u>	<u>0.10</u>	0.0	1.1	1	10.0	0.10	<u>0.10</u>	0.0	13	20	35.0
Benzo(a) pyrene							0.025	0.025	0.0	0.64	0.23	178.3	0.025	0.025	0.0	8.1	13	37.7
Indeno(1,2,3-c,d)pyrene							0.50	0.50	0.0	0.5	0.2	150.0	0.50	0.50	0.0	5.8	10	42.0
Dibenz(a,h)anthracene							0.50	0.50	0.0	0.5	0.5	0.0	0.50	0.50	0.0	0.7	1	30.0
Benzo(g,h,i)perylene							0.50	0.50	0.0	0.5	0.20	150.0	0.50	0.50	0.0	5.5	9.3	40.9
Total Petroleum Hydrocarbons (
TRH C6-C9							12.5	12.5	0.0	<u>12.5</u>	12.5	0.0	12.5	12.5	0.0			
TRH >C10-C14							<u>25</u>	25	0.0	25	25	0.0	25	25	0.0			1
TRH >C15-C28							50	50	0.0	50	50	0.0	50	<u>50</u>	0.0	1		1
TRH >C29-C36							50	50	0.0	50	50	0.0	50	<u>50</u>	0.0			1
Benzene							0.5	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0	1		1
Toluene							1	1	0.0	1	1	0.0	1	1	0.0			1
Ethylbenzene							0.5	0.5	0.0	0.5	0.5	0.0	0.5	<u>0.5</u>	0.0	1		1
Xylenes							0.5	0.5	0.0	0.5	0.5	0.0	0.5	0.5	0.0	1		

Note all units in mg/kg

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

 SOLD identifies where KPD results

 intralaboratory

 >50
 >60

 where both sample results exceed ten x PQL

 >75
 >85

 where both sample results are within 5 to 10 x PQL

 >100
 >100

 where both sample results are within 2 to 5 x PQL

AD>2.5 * PQL where one or both sample results are <2 x PQL

AD>2.5 * PQL where or BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Sample Identification	MW102	DUP A		MW104	DUP B		MW104	DUP B1	
Duplicate Type	Intralat	oratory	RPD %	Intrala	boratoy	RPD %	Trip	licate	RPD %
Date	9/07	/2014		9/07	/2014		9/07	/2014	
Metals									
Aluminium	5	8900	99.9	1300	1300	0.0			
Arsenic	1	3	66.7	2	1	100.0			
Cadmium	0.05	0.05	0.0	0.05	0.05	0.0			
Chromium	0.5	11	95.5	6	6	0.0			
Copper	2	3	33.3	3	3	0.0			
Nickel	2	6	66.7	5	5	0.0			
Lead	0.5	4	87.5	0.5	0.5	0.0			
Zinc	4	14	71.4	8	8	0.0			
Mercury	0.025	0.025	0.0	0.025	0.025	0.0			
Fluoride	3200	3400	5.9	13000	14000	7.1			
Total Petroleum Hydroca	rbons (TPH)								
TPH C6-C9	18	22	18.2						
TPH C10-C14	25	25	0.0						
TPH C15-C28	50	50	0.0						
TPH C29-C36	50	50	0.0						
Polycyclic Aromatic Hyd	rocarbons (P/	AH)							
Naphthalene				0.05	0.05	0.0	0.05	0.1	50.0
Acenaphthylene				0.05	0.05	0.0	0.05	0.1	50.0
Acenaphthene				0.05	0.05	0.0	0.05	<u>0.1</u>	50.0
Fluorene				0.05	0.05	0.0	0.05	<u>0.1</u>	50.0
Phenanthrene				0.05	0.05	0.0	0.05	0.1	50.0
Anthracene				0.05	0.05	0.0	0.05	0.1	50.0
Fluoranthene				0.1	0.1	0.0	0.1	0.1	0.0
Pyrene				0.2	0.2	0.0	0.2	0.1	100.0
Benz(a)anthracene				0.05	0.05	0.0	0.05	<u>0.1</u>	50.0
Chrysene				0.1	0.05	100.0	0.1	<u>0.1</u>	0.0
Benzo(b)&(k)fluoranthene				0.1	0.3	66.7	0.1	<u>0.1</u>	0.0
Benzo(a) pyrene				0.1	0.1	0.0	0.1	0.1	0.0
Indeno(1,2,3-c,d)pyrene				0.1	0.1	0.0	0.1	0.1	0.0
Dibenz(a,h)anthracene				0.05	0.05	0.0	0.05	0.1	50.0
Benzo(g,h,i)perylene				0.1	0.1	0.0	0.1	0.1	0.0

Note all units in mg/kg

Results <u>underlined</u> were not detected and are reported as half the detection limit for statistical purpose.

BOLD identifies where RPD results

intralaboratory interlaboratory

>50 >60 where both sample results exceed ten x PQL

>75 >85 where both sample results are within 5 to 10 x PQL

>100 >100 where both sample results are within 2 to 5 x PQL

AD>2.5 * PQL where one or both sample results are <2 x PQL

BOLD identified where blanks >0

Where results are within two of the above ranges the most conservative criteria have been used to assess duplicate performance

Appendix A

2012 Soil Investigation Results

Summary of Results
Phase 2 Assessment

Environ

TABLE LR1 Soil Analytical Results fo	r the Site																														
Sample Identification	r the Site	1		Guideline			MW06	MW06	SB11	SB12	SB13	MW14	MW15	MW16	MW 16	MW17	MW17	MW18	MW18	SB15	SB15	SB16	SB16	MW07	MW07	MW08	MW08	SB17	SB18	MW19	MW 19
Sample Depth (m)	PQL		1	Guidenne	Managemen		0-0.1	0.5-0.6	0.2-0.4	1.8-1.9	1.0-1.2	0-0.4	0.1-0.4	0.2-0.4	1.8-2.0	0.2-0.4	0.8-1.0	0-0.2	0.8-1.0	0.3-0.5	1-1.2	0.2-0.4	1-1.2	0-0.2	0.8-1.0	0.15-0.3	0.4-0.6	0.3-0.4	0.5-0.6	FILL 1	FILL 2
	PUL	HIL D'	HSL D ^B	EIL C/IC	Managemen	ESL C/F																									
Date					Limits ^D		13/04/2012	13/04/2012	17/04/2012	18/04/2012	18/04/2012	19/04/2012	19/04/2012	18/04/2012	18/04/2012	18/04/2012	18/04/2012	19/04/2012	19/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	18/04/2012	18/04/2012	19/04/2012	19/04/2012
							T.	T	1			T	1																		
Sample Profile							ALLUVIAL	RESIDUAL	FILL	FILL	FILL	FILL	FILL	FILL	ESTUARINE	FILL	ESTUARINE	FILL	ESTUARINE	ESTUARINE	ESTUARINE	ESTUARINE	ESTUARINE	TOPSOIL	ESTUARINE	RLL	ESTUARINE	FILL	FILL	FILL	FILL
PAEC Sampled							Background	Background	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Carbon Plant	Refuelling	Refuelling	Refueling	Refuelling	Refuelling	Refuelling	Refuelling	Refuelling	DSA	DSA	DSA	DSA					
Sample collected by							KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG
Metals																															7
Aluminium	50	NL.		-			2270	10700	9550	10300	14200	14700	13800	7740	3180	6740	1310	32700	8210	620	12500	3410	1720	7710	5720	690	4280				
Arsenic	1	3000	-	160	-	-	0.9	3.4	10.9	16.5	3.4	6.3	5.1	0.9	1.2	0.8	0.2	12	1.8	0.2	1.2	0.8	0.3	4.4	1.8	< 0.1	0.2				-
Cadmium	0.1	900		-	-	-	< 0.1	<0.1	< 0.1	<0.1	0.1	0.1	2.4	< 0.1	<0.1	<0.1	< 0.1	0.4	<0.1	<0.1	<0.1	< 0.1	<0.1	0.2	< 0.1	0.2	<0.1				-
Chromium (VI)	1	3600		320**	-	-	2.5	15.1	7.3	7.9	52.1	25.5	18	5	3.2	5.3	1.4	26.9	6	1.9	26.6	3.9	5.7	10.5	21.2	3.9	3.6				
Copper	2	240,00		210**			0.4	0.6	13.6	14.2	16	15.6	44.5	7.8	0.2	4.2	0.3	21.9	0.3	0.8	5.8	0.5	0.6	32.8	2.2	4.1	0.4				-
Nickel	1	6000		140**	-		1.3	2	11	12.4	34.4	53	27.8	6.4	1.8	2	0.6	51.6	4.6	1.1	11.2	3.3	2.6	8.1	11.9	2.7	5.8				-
Lead	2	1500		1800		-	2.3	8.1	6.3	6.5	25.8	9.2	44.4	3.6	1.8	37	0.6	20.6	3.3	2.5	12.8	4.8	1.2	49.4	4.6	3.6	1.4				-
Zinc	5	400.00		440**			5.3	2.9	51.6	53.4	178	70.4	115	18.8	0.6	43.4	0.5	288	14	2.6	32.6	2.8	1.3	384	7	59.9	12.1				
Mercury (inorganic)	0.05	730			1	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	=0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	s0.1	<0.1				
Fluoride	40	17000		1 -	1 .	1 .	150	<0.1	240	150	1960	2350	3950	700	<0.1	200	<0.1 80	7740	650	830	100	<0.1	280	3240	<0.1 90	<0.1	130				
Non Metallic Inorganics	40	17000			. · ·		100	140	∠40	100	1300	2350	3920	700	00	200	υo	//40	030	UEo	100	00	200	3240	υe	06	130				
	1.4	4500	1		1	1		1	-1		4			3	-																_
Total Cyanide	1	1500	1 .		1 .	1 .	<1	<1	<1	<1	<1	<1	<1	3	<1	<1	<1	<1	<1												
Polycyclic Aromatic Hydrocarbons (PAH)	1	1		1																											
Naphthalene	0.5			370	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4.0	<0.5
Acenaphthylene	0.5			-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<4.0	<0.5
Acenaphthene	0.5		-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.8	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.8	8.4	1.6
Fluorene	0.5			-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.2	4.2	0.8
Phenanthrene	0.5			-	-	-	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	0.8	<0.5	<0.5	<0.5	<0.5	16.6	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	30.2	46.7	7.8
Anthracene	0.5		-	-			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	6.3	9.6	1.6
Fluoranthene	0.5		-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	3.8	< 0.5	<0.5	<0.5	< 0.5	41.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	0.6	<0.5	<0.5	59.7	137	21.6
Pyrene	0.5		-	-	-	-	< 0.5	<0.5	< 0.5	<0.5	<0.5	0.7	3	< 0.5	<0.5	<0.5	< 0.5	38.3	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	0.6	0.6	<0.5	<0.5	59.1	133	21.7
Benz(a)anthracene	0.5			-	-	-	< 0.5	<0.5	<0.5	< 0.5	<0.5	0.7	5.3	<0.5	<0.5	<0.5	< 0.5	47.1	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	0.5	0.5	<0.5	<0.5	46.7	103	24.3
Chrysene	0.5		-	-	-		<0.5	<0.5	<0.5	<0.5	<0.5	0.8	8.1	<0.5	<0.5	<0.5	<0.5	50.3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5	<0.5	45.6	97.3	23.5
Benzo(b)&(k)fluoranthene	1			-			<0.5	<0.5	<0.5	<0.5	<0.5	1.1	9.6	<0.5	<0.5	<0.5	<0.5	67.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	0.9	<0.5	<0.5	60.3	140	31
Benzo(k)fluoranthene	0.5			-		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.1	<0.5	<0.5	<0.5	<0.5	20.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	21.2	47.7	10
Benzo(a) pyrepe	0.5					72	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	2.1	<0.5	<0.5	<0.5	<0.5	33.6	<0.5	<0.5	:0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	43.4	101	19.2
Indeno(1,2,3-c,d)ovrene	0.5			-		12	<0.5	<0.5	<0.5	<0.5	<0.5	0.0	1.5	<0.5	<0.5	<0.5	<0.5	29.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	41.6	57.5	17.5
Dibenz(a,h)anthracene	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	77	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	8.8	12.8	4.6
Benzo(g.h.i)perviene	0.5	· ·		-			<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.8	<0.5	<0.5	<0.5	<0.5	28.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	46.1	65	4.0
Benzo(g,n,i)perviene Benzo(a)pyrepe TEQ	0.5	40		-			<0.5	<0.5	<0.5	<0.5	<0.5	1.87	1.8	<0.5	<0.5	<0.5	<0.5	28.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	70.1	150.2	31.6
Sum of reported PAH	-	40		-				<0.5	<0.5	<0.5	<0.5	5.8	4.5	<u.5 0.8</u.5 	<0.5	<0.5	<0.5	387		<0.5	<0.5			<0.5	2.2			<0.5	475		
	-	4000	-	-	•		<0.5	<0.5	<0.5	<0.5	<0.5	5.8	38.6	0.8	<0.5	<0.5	<0.5	387	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.2	3.2	<0.5	<0.5	475	963	205
Total Petroleum Hydrocarbons (TPH)		-		1	1		1																								
TPH C6-C9	10		260	-	800															<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH C10-C14	50		NL	-	1000	170														<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
TPH C15-C28	100			-	5000	1700														<100	<100	<100	<100	<100	<100	1400	<100	<100	980	1870	400
TPH C29-C36	100			-	10,000	3300														<100	<100	<100	<100	120	<100	1960	<100	<100	1040	1890	470
TPH C10-C36	-			-																<50	<50	<50	<50	120	<50	3360	<50	<50	2020	3760	870
Polychlorinated Biphenyls																															
Total PCBs	1			-		-																									
Semi Volatile Organic Compounds																															1
Total PAHs	1	4000		-																<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Total Phenois	1	240,00		-		-														<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Phthalate Esters	5		-	-	-	-	1	1	1			1	1		-					<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Nitrosamines	1		-	-		-														<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Nitroaromatics and Ketones	1		-	-		-														<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Haloethers	0.5			-					1				1							<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td>1 1</td><td></td><td></td><td></td><td></td></lor<>		1 1				
Chlorinated Hydrocarbons	1			-		-	1	1				1								<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<>						
Anilines and Benzidines	1						1	1	1			1	1							<lor d OR</lor 	<lor.< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td> </td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor.<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td> </td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td> </td><td></td><td></td><td></td><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td> </td><td></td><td></td><td></td><td></td></lor<></td></lor<>	<lor< td=""><td></td><td> </td><td></td><td></td><td></td><td></td></lor<>						
Organochlorine Pesticides	1	t í		1	1	1	1	1	1			1	1							<lor <lor< td=""><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 		<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td><lor <lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td><lor <lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<>	<lor <lor< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td></lor<></lor 		1				
Organophosphorus Pesticides	0.5	1		1	1	1	1	1	1			1	1							<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td></lor<>						-
Miscellaneous Compounds	0.5	· ·			+ •		1	+				+								<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td></lor<></lor 						
	0.0	1 .	- I - I		1	- · ·	1	1			_	1			_	_		_		*LUK	REOR	SLOW	ALUK.	ALC:N	*LUK	_	I I	_			
Volatile Organic Compounds		1		1	1	1	1																								_
Monocyclic Aromatic Hydrocarbons	5	- ·					+	+	I			+	I																		
Oxygenated Compounds	0.5		-	-	-		1	1				1																			
Sulfonated Compounds	1			-	-	-																									
Fumigants	0.5			-	-	-	1	1	1			1	1												l						
Halogenated Aliphatic Compounds	5	· ·		-	-		1	1	1	1		1	1	1																	
Halogenated Aromatic Compounds	0.5			-	-		1	1	1			1	1																		
Trihalomethanes	0.5	1					1	1				1																			

All results are in units of mg/kg.

An India An India Organia Ben Calification and a service of organic Ben Calification and a service of the Company Ben Calification and a service of the Company Ben Calification and Ambient Compa

0

FLS	Flammable Liquids :

PAECs CBP Clay Borrow Pit FLS Flammable Liquids Store AWP Andoe Waste Pile DSA Direct Spray Area CBWB Cathode Bay Washdown Bay PRA Pot Rebuild Area

TABLE LR1 Soil Analytical Results f	or the Site																																
Sample Identification	or the one			Gu	ideline			SB1	SB2	SB3	SB4	SB5	SB6	SB7	SB8	SB14	SB14	MW09	MW 10	SB9	SB9	MW11	SB10	SB10	MW12	MW12	MW13	SB20 (i)	MW01	MW02	MW03A	MW05	MW21
Sample Depth (m)	PQL	HIL D ^A	HSL D		IL C/I ^C	Management	ESL C/F	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.05	0-0.4	0.6-0.8	0.1-0.3	0.2-0.4	0.3-0.4	0.6-0.8	0-0.2	0.5-0.6	1-1.2	0-0.2	0.4-0.6	0.2-0.4	0-0.05	0.3-0.4	0-0.05	0.4-0.5	1.8-2.0	0.2-0.4
Date		HIL D	Hat D	EI		Limits ^D	EGE GA	12/04/2012	12/04/2012	12/04/2012	12/04/2012	12/04/2012	12/04/2012	12/04/2012	12/04/2012	18/04/2012	18/04/2012	17/04/2012	16/04/2012	16/04/2012	16/04/2012	16/04/2012	17/04/2012	17/04/2012	17/04/2012	17/04/2012	17/04/2012	13/04/2012	11/04/2012	11/04/2012	12/04/2012	12/04/2012	16/04/2012
Sample Profile								FILL	ESTUARINE	FILL	FILL	FILL	FILL	FILL	FILL	TOPSOIL	FILL	FILL	FILL	TOPSOIL	FILL	FILL	FILL	FILL	FILL								
PAEC Sampled								Pot Lines	Pot Lines	Pot Lines	Pot Lines	SPL Sheds		SPL Sheds		Maintenance	Maintenance	FLS	FLS	Washbay	Washbay	Washbay	CBWB	CBWB	AWP	AWP	AWP	Switchward	CBP	CBP	CBP	CBP	PRA
Sample collected by								FR	FR ER	FR	FR ER	ER	FR	FR	FR	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	KJG	FR	KJG	KJG	KJG	KJG	KJG
Sample conecied by								TR	TR.	TR.	TR.	TK .	TR	TR	TR.	ngo	100	100	100	nau -	100	nau	100	100	100	100	had	TR.	100	100	100	100	100
Metals																																	
Aluminium	50	NL.		1	-			53300	139000	138000	41700	26900	23700	11800	11000	11600	2820	5460	20500	39800	12600	15000	60800	4640	55800	3260	36700	T	10400	14400	17600	9510	15800
Arsenic	1	3000			160			4.5	28.9	8.8	14.6	5.1	3.4	2.4	1.9	3.6	0.9	6.4	16.4	17.1	23.9	5.8	10.8	1.4	10.1	1	10.5		4.9	7.9	4.1	4.9	1.3
Cadmium	0.1	900				-		0.7	1.8	1.4	0.8	0.2	0.2	0.1	0.1	<0.1	< 0.1	0.1	0.8	11.1	0.2	0.2	4	< 0.1	1.4	<0.1	< 0.1		<0.1	< 0.1	1	0.1	<0.1
Chromium (VI)	1	3600		3	320**	-		26.8	35	14.8	36	39.6	36.5	21.9	14.2	22.4	3.5	12.8	13.2	59.5	18.8	23.7	51.2	8.7	46.8	4,4	10.9		14.6	22.4	27.9	16.3	44
Copper	2	240,000		2	210**			21.1	280	18.9	89.8	33.7	28	12.4	11.6	17.8	0.4	21.9	71.4	82	62	36.3	55.2	1.7	41.1	0.3	6.7		7.9	1.8	12.4	11.1	34.6
Nickel	1	6000		1	140**	-		98	159	166	65.7	49	39.3	24.1	18.6	69.9	1.9	59.9	14.7	152	29.4	24.5	77.4	6.5	103	3.4	79.9		13.3	4.9	35.4	15.8	27.6
Lead	2	1500		1	1800			25	430	28.7	247	18.3	39.7	8.6	10.1	8.8	1.9	18	107	185	66.4	48	58	3.3	34.1	2.6	7.5		8.4	11.1	26.2	15	2.8
Zinc	5	400,000		4	140**	-		229	5400	444	1210	232	179	65.3	362	90.7	1.1	260	1380	578	621	420	425	4.9	304	1	21.3		31.6	15.4	75.5	76.7	59.2
Mercury (inorganic)	0.05	730				-		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	<0.1
Fluoride	40	17000*			-			13400	26400	41900	20900	1470	680	520	1440	970	70	700	16200	39000	1230	960	10600	190	47100	1010	17700		310	190	2120	1030	190
Non Metallic Inorganics																																	
Total Cyanide	1	1500			-	-												<1	<1			<1	4	<1	<1	1	<1	1					
Polycyclic Aromatic Hydrocarbons (PAH)			_																														
Naphthalene	0.5				370			1	L	L					1	1	1	<0.5	<0.5	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	1
Acenaphthylene	0.5	-	<u> </u>					1				1						<0.5	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	0.5		+ -					1				-			1		l	<0.5	<0.5			<0.5	<0.5	<0.5	1.4	<0.5	0.6	1	<0.5	<0.5	<0.5	<0.5	
Fluorene	0.5																	<0.5	<0.5			<0.5	<0.5	<0.5	0.9	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	
Phenanthrene	0.5																	<0.5	<0.5			0.6 <0.5	1.8	<0.5	15.2 4.1	<0.5	5		<0.5	<0.5	<0.5	<0.5	
Anthracene Fluoranthene	0.5														-			<0.5	<0.5			2	0.6	<0.5	4.1	<0.5	20.4		<0.5	<0.5	0.8	<0.5	
Putoranthene	0.5		-															<0.5	1.1			2	9.4	<0.5	52.2	<0.5	20.4		<0.5	<0.5		<0.5	
Pyrene Benz(a)anthracene	0.5																	<0.5	0.5			1.9	9.4	<0.5	52.6	<0.5	20.5		<0.5	<0.5	<u.5 0.9</u.5 	<0.5	
Christene	0.5																	0.6	0.5			2	24.3	<0.5	74.3	<0.5	17		<0.5	<0.5	2.2	1.4	
Benzo(b)&(k)fluoranthene	0.0																	11	0.8			3.3	24.3	<0.5	88.6	<0.5	26.6		1	<0.0	3	3	
Benzo(k)fluoranthene	0.5																	<0.5	<0.5			1.2	10.8	<0.5	31.2	<0.5	11.8		<0.5	<0.5	<0.5	<0.5	
Benzo(a) pyrene	0.5						72 ^r											<0.5	<0.5			1.7	8.9	<0.5	29.4	<0.5	16.1		0.7	<0.5	1.2	1	
Indeno(1,2,3-c,d)pyrene	0.5																	<0.5	<0.5			1.2	10.3	<0.5	20.7	<0.5	11.4		<0.5	<0.5	<0.5	<0.5	
Dibenz(a,h)anthracene	0.5																	<0.5	<0.5			<0.5	3.1	<0.5	7.2	<0.5	2.5		<0.5	<0.5	0.5	<0.5	
Benzo(g,h,i)perylene	0.5					-												<0.5	<0.5			1.5	16	<0.5	24	<0.5	14.5		< 0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ		40			-													<0.5	<0.5			2.98	19.79	<0.5	56.9	<0.5	25.6		<0.5	<0.5	1.52	1.34	
Sum of reported PAH	-	4000			-	-												1.7	3.9			17.2	149	<0.5	458	<0.5	165		0.5	< 0.5	0.7	<0.5	
Total Petroleum Hydrocarbons (TPH)																			-						•								
TPH C6-C9	10		260		-	800	-																										
TPH C10-C14	50		NL			1000	170																										
TPH C15-C28	100					5000	1700																										
TPH C29-C36	100					10,000	3300																										
TPH C10-C36	-					-																											
Polychlorinated Biphenyls	1							1																1	1	1	1	1					
Total PCBs	1	-			-	-		<0.01	<0.01	<0.01	<0.01	1			1			1						I	1		1	<0.1	I				
Semi Volatile Organic Compounds	1	107.7	-	_												105	1.00	1.00	1.00					1			1		1.00	1.00	105	1.05	1.07
Total PAHs	1	4000			-	-		+	<u> </u>	<u> </u>		+			1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>					+			1	+	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Total Phenois Phthalate Esters	1	240,000			-			+	<u> </u>	<u> </u>		+			1	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td>1</td><td>+</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 					+			1	+	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Phthalate Esters Nitrorsmines	5	-			-							+				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></td></lor<></lor 	<lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>					-				-	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Nitrosamines Nitroaromatics and Ketones	1		-	_	-			-				-				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 										<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Haloethers	0.5	· ·		_								+			1	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 					-				-	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
naidetners Chlorinated Hydrocarbons	0.5		+	_	-			-				-				<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 										<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Anilines and Benzidines	1		1	-				1				1			1	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	1	1			1			1	1	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""></lor<></lor </td></lor<></lor 	<lor <lor< td=""></lor<></lor
Organochlorine Pesticides	1							1				1			1	<lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td>1</td><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 					1				1	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor </td></lor<></lor 	<lor <lor< td=""><td><lor< td=""></lor<></td></lor<></lor 	<lor< td=""></lor<>
Organophosphorus Pesticides	0.5							1				1			1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		1			1			1	1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Miscellaneous Compounds	0.5		-					1				1			1	<lor< td=""><td><lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor </td></lor<></td></lor<>	<lor< td=""><td><lor <lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor </td></lor<>	<lor <lor< td=""><td><lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></lor 	<lor< td=""><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>		1			1			1	1	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""></lor<></td></lor<>	<lor< td=""></lor<>
Volatile Organic Compounds							L	a																a			л	a	1		concert t		
Monocyclic Aromatic Hydrocarbons	5				-			<0.01	<0.01	<0.01	<0.01							1						1				<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Oxygenated Compounds	0.5							<0.01	<0.01	<0.01	<0.01				1			1		1				1			1	<lor< td=""><td>1</td><td></td><td></td><td></td><td>1</td></lor<>	1				1
Sulfonated Compounds	1	-			-			<0.01	<0.01	<0.01	<0.01	1			1	1	1	1		1	1		1	1	1			<lor< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td></lor<>			1	1	1
Fumigants	0.5				-	-		<0.01	<0.01	<0.01	<0.01	1			1	1	1	1		1	1		1	1	1			<lor< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td></lor<>			1	1	1
Halogenated Aliphatic Compounds	5				-	-		<0.01	<0.01	<0.01	<0.01	1			1	1	1	1		1	1		1	1	1			<lor< td=""><td></td><td></td><td>1</td><td>1</td><td>1</td></lor<>			1	1	1
		-						< 0.01	<0.01	<0.01	< 0.01																	<lor< td=""><td></td><td></td><td></td><td></td><td></td></lor<>					
Halogenated Aromatic Compounds	0.5	-																															

All results are in units of mgkg.	PAECs	
	CBP	Clay Borrow Pit
Biank Cell indicates testing was not completed	FLS	Flammable Liquids Store
PQL = Practical Quantitation Limit.	AWP	Anode Waste Pile
^a NEPM (2013) Health Investigation Level 'D' (Industrial/Commercial)	DSA	Diesel Spray Area
* NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial Industrial	CBWB	Cathode Bay Washdown Bay
^C NEPM (2013) Ecological Investigation Levels for Commercial Industrial	PRA	Pot Rebuild Area
^{IN} NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil - note that the F1 to F4 fractions are different to the fractions reported here		
* NEPM (2013) Ecological Screening Level for Commercial Industrial		
⁷ Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Enviro		
* Fluoride (soluble) and aluminium Preliminary Screening Criteria from ENVIRON (2013) "Preliminary Screening Level Health Risk Assessment for Fluoride and Alumin		
** EIL values calculated using site-specific CEC (7.28 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations		
Results shown in shading are in excess of the primary health acceptance criteria		
Results showin in underline are in excess of the primary ecological acceptance criteria		
<lor =="" less="" limit="" of="" reporting<="" td="" than="" the=""><td></td><td></td></lor>		

TABLE LR2 Soil Analytical Results for Drainage Lines and Dams

TABLE LK2 SOIL ANALY	lical Kest		lage Lines	and Dams										24 21 22	2.				B 1 B	
Sample Identification					T		D1	D2	D3	D5	D6	D7	D8	D8-BASE	D9	D10	D11	D11-1	D12	D12-1
Sample Depth (m)	PQL	HIL D ^A	HSL D ^B	EIL C/IC	Management	ESL C/I ^E	0-0.3	0-0.2	0-0.2	0-0.2	0-0.05	0-0.3	0-0.1	0.1-0.35	0-0.2	0-0.05	0-0.2	0.2-0.4	0-0.2	0.3-0.4
Date		THE D	HOL D	EIE 0/I	Limits ^D	EGE O/I	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012
Sample Profile							SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY	RESIDUAL	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY
PAECs Sampled							Western Dam	Western Dam	Southern Dam	Drain at SPL Sheds	Drain at AWP	Drain at AWP	Drain at Alcan Mound	Drain at Alcan Mound	Drain near Carbon Plant	Drain near DSA	East Surge Dam	East Surge Dam	East Surge Dam	East Surge Dam
Sample collected by							FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR	FR
Metals																				
Aluminium	50	NL*	-	-	-	-	166000	31900	14200	25100	26800	39200	40900	15100	10900	23900	12800	13500	56000	5030
Arsenic	1	3000	-	160	-	-	14.1	9.3	5.9	5.7	9.2	17	16.1	3.2	6.7	4	5.7	3	16	0.6
Cadmium	0.1	900	-	-	-	-	2.6	0.6	0.2	0.6	3	2	4.4	<0.1	<0.1	1.1	1.2	0.3	4.5	<0.1
Chromium	1	3600	-	320**	-	-	25.8	23.2	23.2	27.8	41.4	35.9	49.5	18.8	13.5	15.5	16	13.7	55.4	6.4
Copper	2	240,000	-	210**	-	-	43.6	10.7	12.9	10	40.8	31.4	45.7	3.7	5.4	11.6	3.7	2	35.9	1
Nickel	1	6000	-	140**	-	-	173	78	21.1	22.2	118	87	119	10.7	9	49.6	10.9	6.9	103	3.7
Lead	2	1500	-	1800	-	-	49.9	17.9	24.3	24.7	52.1	71.4	79.6	11.4	12.2	31.8	12.7	7.7	63.2	3.8
Zinc	5	400,000	-	440**	-	-	1290	328	122	132	707	599	955	43	110	197	72.4	28.4	671	5.9
Mercury	0.05	730	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
Fluoride	40	17000*	-	-	-	-	38500	5850	150	1110	3810	7350	3790	520	750	3330	1480	3010	2510	210
Non Metallic Inorganics				-																
Total Cyanide	1	1500		-	-	-	2	<1	<1	<1	1	2	24	2	<1		2	2	86	4
Polycyclic Aromatic Hydr	rocarbons	(PAH)																		
Naphthalene	0.5	-	-	370	-	-	< 0.5	< 0.5	<0.8	<0.8	<8.0	<0.5	<0.8	<0.5	<0.5	<0.5	<4.0	<0.5	<0.8	<0.5
Acenaphthylene	0.5	-	-	-	-	-	< 0.5	< 0.5	<0.8	<0.8	<8.0	<0.5	<0.8	<0.5	<0.5	< 0.5	<4.0	<0.5	<0.8	< 0.5
Acenaphthene	0.5	-	-	-	-	-	1.4	< 0.5	<0.8	<0.8	<8.0	2.8	2.5	<0.5	<0.5	< 0.5	<4.0	<0.5	<0.8	<0.5
Fluorene	0.5	-	-	-	-	-	1.2	< 0.5	<0.8	<0.8	<8.0	2.2	1.5	<0.5	<0.5	< 0.5	<4.0	<0.5	<0.8	<0.5
Phenanthrene	0.5	-	-	-	-	-	3.4	< 0.5	<0.8	<0.8	38.3	20	18.1	1.7	<0.5	0.7	<4.0	< 0.5	2.3	<0.5
Anthracene	0.5	-	-	-	-	-	0.7	< 0.5	<0.8	<0.8	14.1	5.1	4.6	0.5	<0.5	< 0.5	<4.0	<0.5	<0.8	<0.5
Fluoranthene	0.5	-	-	-	-	-	5.5	0.6	2.4	0.9	107	86.4	65.4	7.9	<0.5	3.7	33.1	0.7	12.9	<0.5
Pyrene	0.5	-	-	-	-	-	4.3	0.5	2.1	0.8	102	79.9	60.4	7.9	<0.5	3.6	31.3	0.8	12.5	<0.5
Benz(a)anthracene	0.5	-	-	-	-	-	3.4	0.6	2.6	1.1	109	73.3	63.4	8.5	<0.5	4.4	46.2	1.3	17.8	<0.5
Chrysene	0.5	-	-	-	-	-	3.8	0.8	4.6	1.3	116	84.8	64.9	11.2	<0.5	6.8	91	2.1	23.4	< 0.5
Benzo(b)&(k)fluoranthene	1	-	-	-	-	-	6.1	1.6	8.6	2.4	224	145	151	30.1	0.6	11.5	172	3.9	46.5	<0.5
Benzo(k)fluoranthene	0.5	-	-	-	-	-	1.5	< 0.5	2	<0.8	61.7	46.2	35.9	7.7	<0.5	3	37.2	0.9	11	<0.5
Benzo(a) pyrene	0.5	-	-	-	-	72 ^F	2.4	0.6	2.1	0.8	85.6	57.1	58.8	15.1	<0.5	3.4	21.7	0.9	16	<0.5
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	-	-	1.4	< 0.5	1.5	<0.8	54.6	32.2	46.3	13	<0.5	2.8	16.2	0.6	10.9	<0.5
Dibenz(a,h)anthracene	0.5	-	-	-	-	-	< 0.5	<0.5	<0.8	<0.8	17.2	8.3	12.3	3	<0.5	0.9	6.2	<0.5	3.1	<0.5
Benzo(g,h,i)perylene	0.5	-	-	-	-	-	1.9	0.6	2.2	<0.8	66.9	38.2	59.9	16.6	<0.5	3.7	20.4	0.9	14.2	<0.5
Benzo(a)pyrene TEQ	-	40	-	-	-	-	3.9	1.1	4.0	1.6	149.6	96.3	102.0	24.3	<0.5	6.6	56.2	1.9	28.1	<0.5
Sum of reported PAH		4000	-	-	-	-	37	5.3	28.1	7.3	996	682	645	123	0.6	44.5	475	12.1	171	<0.5
22. Competition 1741				L	I	l	51	2.0					2.10	.20	510					

All results are in units of mg/kg.

Blank Cell indicates testing was not completed

PQL = Practical Quantitation Limit.

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil - note that the F1 to F4 fractions are different to the fractions reported here

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

^F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hydrocarbons (PAHs) (Environmental and Human Health Effects)

* Fluoride (soluble) and aluminium Preliminary Screening Criteria from ENVIRON (2013) 'Preliminary Screening Level Health Risk Assessment for Fluoride and Aluminium'

** EIL values calculated using site-specific CEC (7.26 meq/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the March 2014 investigations

Results shown in shading are in excess of the primary health acceptance criteria

Results showin in underline are in excess of the primary ecological acceptance criteria

<LOR = Less than the Limit of Reporting

TABLE LR2 Soil Analytical Results for Drainage Lines and Dams

Sample Identification							COMPOSITE 1	COMPOSITE 2	COMPOSITE 3	COMPOSITE 4	ND4-BASE	ND7-BASE
Sample Depth (m)	PQL	LIII. DÅ		EII 0/1 ^C	Management	501 0 #F					0.25-0.35	0.1-0.15
Date		HIL D.	HSL D	EIL C/IC	Limits ^D	ESL C/I ^E	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012	13/04/2012

Sample Profile							SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	CLAY	CLAY
PAECs Sampled							North Dam					
Sample collected by							FR	FR	FR	FR	FR	FR
Metals												
Aluminium	50	NL*	-	-	-	-	26300	24300	22800	8940	10300	15600
Arsenic	1	3000	-	160	-	-	7	6.4	5	2.9	3	4.6
Cadmium	0.1	900	-	-	-	-	5.4	3.7	1.6	0.5	<0.1	0.1
Chromium	1	3600	-	320**	-	-	24.9	19.3	16.4	8.9	13.6	21.2
Copper	2	240,000	-	210**	-	-	7.7	10.2	6.8	4.4	0.7	1.5
Nickel	1	6000	-	140**	-	-	27.4	41.3	70.3	28.6	4.2	7.6
Lead	2	1500	-	1800	-	-	23.8	19.2	10.8	6.2	5.8	9.2
Zinc	5	400,000	-	440**	-	-	308	677	840	184	6.8	46
Mercury	0.05	730	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoride	40	17000*	-	-	-	-	1390	1580	1880	860	340	7350
Non Metallic Inorganics												
Total Cyanide	1	1500	-	-	-	-	<1	<1	<1	<1	<1	<1
Polycyclic Aromatic Hyd	rocarbons	(PAH)										
Naphthalene	0.5	-	-	370	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Acenaphthene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Fluorene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Phenanthrene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Anthracene	0.5	-	-	-	-	-	<0.8	<0.8	<0.5	<0.5	<0.5	<0.5
Fluoranthene	0.5	-	•	-	-	-	7.4	<0.8	<0.5	<0.5	<0.5	<0.5
Pyrene	0.5	-		-	-	-	6.9	<0.8	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	0.5	-		-	-	-	11.4	<0.8	<0.5	<0.5	<0.5	<0.5
Chrysene	0.5	-	•	-	-	-	24	<0.8	0.7	<0.5	<0.5	<0.5
Benzo(b)&(k)fluoranthene	1	-	-	-	-	-	36.9	0.8	1.2	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	0.5	-	•	-	-	-	9.8	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	0.5	-		-	-	72 ^F	7.4	<0.8	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	0.5	-	-	-	-	-	6.9	<0.8	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	0.5	-	-	-	-	-	2.6	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	0.5	-		-	-	-	9.1	<0.8	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ		40	-	-	-	-	16.8	<0.8	<0.5	<0.5	<0.5	<0.5
Sum of reported PAH		4000	-	-	-	-	122	0.8	1.9	<0.5	<0.5	<0.5

All results are in units of mg/kg.

Blank Cell indicates testing was not completed

PQL = Practical Quantitation Limit.

A NEPM (2013) Health Investigation Level 'D' (Industrial/ Commercial)

^B NEPM (2013) Soil Health Screening Level for Vapour Intrusion 'D' Commercial/ Industrial

^C NEPM (2013) Ecological Investigation Levels for Commercial/ Industrial

^D NEPM (2013) Management Limits for TPH Fractions F1 to F4 in soil - note that the F1 to F4 fractions are different to the fractions reported

^E NEPM (2013) Ecological Screening Level for Commercial/ Industrial

^F Canadian Council of Ministries of the Environment (2010) Canadian Soil Quality Guidelines Carcinogenic and other Polycyclic Aromatic Hy

* Fluoride (soluble) and aluminium Preliminary Screening Criteria from ENVIRON (2013) 'Preliminary Screening Level Health Risk Assessm

** EIL values calculated using site-specific CEC (7.26 meg/100g), pH (5.5) and TOC (1.3%) data collected from the Buffer Zone during the I

Results shown in shading are in excess of the primary health acceptance criteria

Results showin in underline are in excess of the primary ecological acceptance criteria

<LOR = Less than the Limit of Reporting

Appendix B

Sampling, Analysis and Quality Plan

Hydro Aluminium Kurri Kurri Smelter, Sampling Analysis and Quality Plan

> Prepared for: Hydro Aluminium Kurri Kurri Pty Ltd

> > Prepared by: ENVIRON Australia Pty Ltd

> > > Date: June 2014

Project Number: AS130328

Prepare	d by:		Authoris	ed by:	
Name:	Kirsty Greenfield		Name:	Fiona Robinson	
Title:	Environmental Scientist		Title:	Manager – Hunter	
Phone:	02 4962 5444		Phone:	02 4962 5444	
Email:	kgreenfield@environcorp.com		Email:	frobinson@environcorp.com	
Signature:	Date:	4/6/14	Signature:	Date:	4/6/14

This document is issued in confidence to Hydro Aluminium Kurri Kurri Pty Ltd for the of providing a Sampling, Analysis and Quality Plan for the Hydro Aluminium Kurri Kurri Smelter. It should not be used for any other purpose.

The report must not be reproduced in whole or in part except with the prior consent of ENVIRON Australia Pty Ltd and subject to inclusion of an acknowledgement of the source. No information as to the contents or subject matter of this document or any part thereof may be communicated in any manner to any third party without the prior consent of ENVIRON Australia Pty Ltd.

Whilst reasonable attempts have been made to ensure that the contents of this report are accurate and complete at the time of writing, ENVIRON Australia Pty Ltd disclaims any responsibility for loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this report.

© ENVIRON Australia Pty Ltd

Document File Name	Date Issued	Version	Author	Reviewer
AS130328_Smelter_SAQP	June 2014	Draft 1	K Greenfield	F Robinson

VERSION CONTROL RECORD

Contents

		Page
1	Introduction	2
1.1	Background	2
1.2	Objectives and Scope of Work	2
1.3	Project Background	2
2	ENVIRON Investigations	3
2.1	Stage 1 of the Phase 2 ESA	3
2.2	Capped Waste Stockpile	4
2.3	General Buffer Zone and Glen Ayr Drift	4
3	Conceptual Site Model	6
4	Data Quality Objectives	7
5	Sampling Plan	10
5.1	Assessment of Phase 2 ESA Results against NEPM (2013)	10
5.2	Data Gap Analysis	17
5.3	Potential Areas of Environmental Concern	21
5.4	Sampling Program	25
5.5	Sampling	29
5.5.1	Soil Sampling Methodology	29
5.5.2	Groundwater Sampling Methodology	31
5.5.3	Sample Handling and Preservation	32
6	Data Quality Indicators	33
7	Basis for Assessment Criteria	34
7.1	Soil	34
8	Reporting Requirements	38
9	References	40
10	Limitations	41
10.1	User Reliance	41

List of Figures

Figure 1:	Site Location Plan
Figure 2:	Conceptual Site Mode
Figure 3:	Anode Waste Pile
Figure 4:	Refuelling Area
Figure 5:	Diesel Spray Area
Figure 6:	Carbon Plant
Figure 7:	Wash Bay
Hydro Aluminium Kurri Kurri Pty Ltd June 2014

Figure 8:	Pot Lines
Figure 9:	Ring Furnace Scrubber
Figure 10:	Playing Fields
Figure 11:	Area East of Playing Fields
Figure 12:	Area East of Clay Borrow Pit
Figure 13:	Storage Area West of Pot Lines

List of Tables

Table 5.1:	Re-assessment of Identified Contamination from Phase 2 ESA
Table 5.2:	Assessment of Previously Inaccessible Buildings at the Smelter
Table 5.3:	Potential Areas of Concern Requiring Investigation
Table 5.4:	Sampling Program for PAECs
Table 5.5:	Soil Sampling Methodology
Table 5.6:	Groundwater Sampling Methodology
Table 6.1:	Data Quality Indicators
Table 7.1:	Soil Assessment Criteria (mg/kg) Health and Ecological Investigation Levels
Table 7.2:	Soil Assessment Criteria for Vapour Intrusion – HSL D (mg/kg) – Sand
Table 7.3:	ESLs and Management Limits for Petroleum Hydrocarbons
Table 7.4:	Health Screening Levels for Asbestos Contamination in Soil (mg/kg)
Table 7.5	Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)

Acronyms and Abbreviations

ACM AHD ALS ANZECC B(a)P BGL BTEX	Asbestos Containing Materials Australian Height Datum Australian Laboratory Services Australian and New Zealand Environment and Conservation Council Benzo(a)pyrene Below Ground Level Benzene, Toluene, Ethylbenzene & Xylenes (Monocyclic aromatic Hydrocarbons)
CT DEC	Certificate of Title NSW Department of Environment and Conservation, now EPA
DP DQI DQO	Deposited Plan Data Quality Indicator
EIL	Data Quality Objective Ecological Investigation Level
EPA	NSW Environment Protection Authority
ESA	Environmental Site Assessment
F GMU	Fluoride Groundwater Management Unit
GPS	Global Positioning System
На	Hectare
HIL	Health Investigation Level
HSL	Health Screening Level
HRA km	Health Risk Assessment Kilometres
LOR	Limit of Reporting
m	Metres
Mercury	Inorganic mercury unless noted otherwise
Metals	As: Arsenic, Cd: Cadmium, Cr: Chromium, Cu: Copper, Fe: Iron, Ni: Nickel, Pb: Lead, Zn:
mg/kg	Zinc, Hg: Mercury, Se: Selenium Milligrams per Kilogram
mg/L	Milligrams per Litre
m AHD	Metres relative to the Australian Height Datum
m BGL	Metres below ground level
m TOC	Metres below top of casing
ML	Megalitre, one million litres
mg/L NATA	Micrograms per Litre National Association of Testing Authorities
NC	Not Calculated
ND	Not Detected
NEHF	National Environmental Health Forum
NEPC	National Environment Protection Council
NEPM	National Environment Protection Measure
NHMRC NSW	National Health and Medical Research Council New South Wales
n	Number of Samples
OH&S	Occupational Health & Safety
PAH	Polycyclic Aromatic Hydrocarbons
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control Relative Percent Difference
RPD TRH	Total Recoverable Hydrocarbons
UCL	Upper Confidence Limit
US EPA	United States Environment Protection Authority
µg/L	Micrograms per Litre
VENM	virgin excavated natural material
-	On tables is "not calculated", "no criteria" or "not applicable"

1 Introduction

1.1 Background

This report presents a Sampling, Analysis and Quality Plan (SAQP) for the second stage of a Phase 2 Environmental Site Assessment (ESA) to be completed at the Hydro Aluminium Kurri Kurri Smelter, located off Hart Road, Loxford, New South Wales, Australia, hereinafter referred to as 'the Site'.

1.2 Objectives and Scope of Work

The objective of the second stage of the Phase 2 ESA is to build upon the results of the first stage in understanding the potential for soil and groundwater contamination at the site that could impact on the use of the Site for commercial/ industrial landuse or cause impact to human health and the environment off-site.

The SAQP includes the following

- A summary of the first stage of the Phase 2 ESA;
- A conceptual site model, including sources of contamination, receptors and pathways between the sources and receptors;
- A data gap analysis;
- Development of Data Quality Objectives (DQOs) and Data Quality Indicators (DQIs);
- Assessment criteria;
- Reporting requirements.

1.3 Project Background

In 2012, Hydro suspended operations at the Kurri Kurri Smelter and it remains on care and maintenance mode. In preparation for possible closure, environmental investigation are being undertaken to understand remediation requirements at the Site and the potential for land divestment.

The Kurri Kurri Smelter used to produce 170,000 tonnes of aluminium metal per annum. The smelter commenced production in 1969 with a single potline. A second potline was commissioned in 1979, and a third added in 1985. In 2002, Hydro undertook an upgrade program, which increased production capacity to 170,000 tonnes. The smelter is surrounded by a 2,500ha buffer zone, part of which is used for agricultural purposes.

2 ENVIRON Investigations

Environ has completed a number of investigations at the Kurri Kurri Smelter since operations were suspended in 2012. The investigations relevant to the second stage of the Phase 2 ESA are outlined below.

2.1 Stage 1 of the Phase 2 ESA

ENVIRON completed Stage 1 of the staged Phase 2 ESA in 2012. Stage 1 included the following documents:

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter

Stage 1 involved the following tasks:

- A desktop study, including a review of historical and background data and a site walkover;
- The identification of 20 areas of concern and five contaminants of concern relating to the production of aluminium and ancillary operations;
- The development of a SAQP to assess the potential areas and chemicals of concern;
- Field investigations, including the drilling of 31 boreholes, installation of 21 groundwater monitoring wells, collection of 45 surface soil samples, 14 sediment samples and 28 groundwater samples;
- Analysis of soil, groundwater and sediment samples for a range of potential contaminants of concern;
- The development of a conceptual site model including sources of contamination, receptors and pathways between the sources and receptors;
- Recommendations for further investigations.

The Phase 2 ESA identified nine areas of concern that require further evaluation, including the Capped Waste Stockpile (formerly known as the Alcan Mound), Anode Waste Pile, East Surge Pond and associated drainage line, Diesel Spray Area, Carbon Plant, Glen Ayr Drift, Clay Borrow Pit, fluoride in soil and groundwater and aluminium in groundwater.

Other areas of concern located within the smelter site were also identified, including the Refuelling Area, Washdown Bay, West Surge Pond, North Dams 1 and 2, Cathode Bar Washdown Area, Pot Rebuild Area, Irrigation Area and General Buffer Zone.

Following the Phase 2 ESA, some of the identified areas of concern including the Capped Waste Stockpile, Glen Ayr Drift and the General Buffer Zone, were assessed separately.

2.2 Capped Waste Stockpile

Following the Phase 2 ESA, the Capped Waste Stockpile was notified as potentially contaminated land to the New South Wales Environment Protection Authority (EPA) under Section 60 of the Contaminated Land Management Act 1997. In response, the EPA requested further information regarding the contamination status of the notified area. ENVIRON completed an Environmental Site Assessment on the notified area in 2013, which included the following tasks:

- Review and collation of relevant historical information pertaining to the Capped Waste Stockpile and the surrounding leachate impact area;
- Field sampling of 14 wells;
- Completion of a pumping test to assess aquifer behaviour;
- Water quality sampling of 14 wells following pumping to assess variations in response to changes in the aquifer;
- Completion of a report identifying known information, data gaps and recommendations for further investigations to address the data gaps.

The recommended further investigations were undertaken, including a site-specific toxicological assessment to identify guidelines for fluoride in soil and waste at the site for human health and for the environment, delineation of the plume using a combination of existing data and further field investigations and a 3 monthly monitoring regime to monitor the leachate plume.

The following documents were produced for the Capped Waste Stockpile, noting the groundwater monitoring is on-going:

- ENVIRON (12 August 2012) 'Section 60 Notification Supporting Information'
- ENVIRON (13 December 2012) 'Environmental Site Assessment, Alcan Mound, Kurri Kurri Aluminium Smelter'
- ENVIRN (March 2013) 'Tier 2 Ecological Risk Assessment, Kurri Kurri Aluminium Smelter'
- ENVIRON (2 April 2013) Preliminary Screening Level, Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- ENVIRON (11 October 2013) 'Plume Delineation Report, Alcan Mound'

2.3 General Buffer Zone and Glen Ayr Drift

In preparation for possible closure, environmental investigations were undertaken across the buffer zone to understand remediation requirements and the potential for land divestment. This work was undertaken in conjunction with the development of a Preliminary Masterplan (dated December 2012) which identified possible end land use scenarios. The Preliminary Masterplan identified 18 land parcels in the buffer zone. A separate environmental

investigation was completed for each land parcel. The reporting of these investigations is currently on-going.

The Glen Ayr Drift is a former underground coal mine located within the buffer zone. Assessment of land filling at the Glen Ayr Drift was undertaken as part of investigations of buffer zone land parcels for potential divestment. This assessment was reported in:

 ENVIRON (November 2013) 'Phase 2 Environmental Site Assessment, Residential Parcel 1'

3 Conceptual Site Model

Following field investigations and an assessment of the laboratory results, ENVIRON completed a conceptual site model in Stage 1 of the Phase 2 ESA. The conceptual site model is provided below. The location of the site is shown in Figure 1.

The site is situated at the foot of a low residual hill and within a low-lying estuarine swamp environment. The original landform was filled to provide a level, raised platform for construction. Fill material comprised sands, refractory brick waste and carbon waste. The fill material was placed over estuarine sands and high plasticity clay. The site is capped with concrete or bitumen surfacing with soil access points around garden beds and limited grassed areas.

Groundwater at the site was identified at shallow depths within the estuarine sands, between 1m and 5m bgs and flowing north to north east across the site. The presence of the deep ring furnace construction, which extends to bedrock, affects groundwater flow directions in this area, causing diversion of groundwater around the structure and localized groundwater mounding to the south of the structure. A shallow sand aquifer extending from the surface to depths of up to 2.0m is presented to the east of Alcan Mound. Groundwater seepage has been observed down-gradient of this area towards the north east. Groundwater flows within the estuarine sands of up to 14m/year have been estimated. Groundwater with the estuarine sands is not used at the site and is not considered a suitable aquifer for use down-gradient of the site.

The buffer zone includes low residual hills to the west and south and a low-lying swampy area to the north and east. The low-lying swampy area contains numerous dams and water courses which are accessible to livestock. A shallow aquifer is present within these estuarine sands and movement of groundwater from the site is expected to occur through the sand lenses to the north and north east. Discharge of groundwater to the surface water bodies is expected to occur. A separate confined aquifer at a higher elevation was identified in the western portion of the buffer zone within residual clays. The estuarine aquifers on site appear isolated from the underlying and surrounding residual clay and bedrock aquifers. A conceptual drawing of the site hydrogeology and geology is shown in Figure 2.

Activities undertaken within the buffer zone comprise cattle grazing, poultry farming, motor sports, residential use and irrigation of storm-water from the site. The remaining buffer zone is undeveloped and comprises bush land, easements and fire trails.

The site model has identified that the populations potentially exposed to site contaminants comprise humans, livestock and flora and fauna within the buffer zone. Exposure to contaminants on site is limited by site capping and restrictions to groundwater access under the current site use. Re-evaluation of this risk may be required in the event of a change of site use.

4 Data Quality Objectives

To ensure that reliable data of adequate type is collected and assessed for the Stage 2 Phase 2 ESA, the seven-step Data Quality Objective (DQO) approach, endorsed in NSW DEC (2006) Guidelines for the NSW Site Auditor Scheme 2nd Edition, will be adopted. The DQOs set quality assurance and quality control parameters for the field and laboratory programs to ensure data of appropriate reliability will be used to assess the environmental condition at the Site.

ENVIRON has developed DQOs in accordance with the seven-step process, which is presented below.

Step 1 – State the Problem

The Site comprises a former aluminium smelter that began operating in 1969 and ceased in 2012. A Phase 2 ESA completed in 2012 identified a number of areas of concern requiring further investigation. The Phase 2 ESA was completed when the smelter was operational and not all areas of the Site could be assessed. As such, uncertainties remain over the soil and groundwater contamination at the Site. These uncertainties need to be reduced to assist with remediation planning.

Step 2 – Identification of the Goals (Decisions) of the Study

The following decisions are to be made from this study:

- New national guidelines for the assessment of site contamination were introduced in 2013 (National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)). Does assessment of areas of concern identified for further evaluation in the Phase 2 ESA under the new guidelines change the outcome for any of these areas?
- Subsequent to the Phase 2 ESA, ENVIRON completed a Health Risk Assessment to determine preliminary screening levels for fluoride in soil for a range of landuses including commercial/ industrial land use. Does assessment of areas of concern identified for further evaluation in the Phase 2 ESA under the preliminary screening criterion change the outcome for any of these areas?
- The smelter has ceased operating. Now that the Site is fully accessible, can other areas of concern be identified that were inaccessible during the previous Phase 2 ESA?
- What is the extent of the impacts to soil and groundwater at specific areas of concern identified during the previous Phase 2 ESA and in the data gap analysis of previously inaccessible areas?
- Are further investigations required at specific areas of concern to further delineate areas requiring remediation?

Step 3 – Identify Information Inputs to the Decision or Goal of the Study

The inputs required to make the above decisions are listed below:

- Comparison of previous Phase 2ESA investigation analytical results against the new guidelines to identify which areas of concern may or may not require further investigation;
- The identification of areas of concern that were previously inaccessible;
- Results of soil and/ or groundwater investigations at each area of concern;
- Proposed land use;
- Appropriate NSW contamination guidelines.

Step 4 – Define the Study Boundaries

Spatial boundaries – The study boundaries have been defined as the spatial boundary of the smelter, as shown in Figure 1.

Vertical boundaries – The study boundary extends a depth of 3m in soil, as this is the depth to which the new guidelines apply. Where groundwater investigations are required, the study boundary extends to beneath the groundwater table.

Temporal boundaries – The temporal boundary is limited to the data collected during the investigation works.

Constraints within the study boundaries – Investigations within the study boundary may be limited by accessibility issues, including the location of underground services and overhead services and the height of buildings and awnings.

Step 5 – Develop a Decision Rule

The decision rules for this investigation are as follows:

- If it is determined that the data generated through this investigation is reliable for use in producing a conceptual site model and delineating the lateral and vertical extent of soil and/ or groundwater contamination at each area of concern, then this information will be used in remediation planning;
- If it is determined that the data generated through this investigation is not suitable, comprehensive or reliable for use in producing a conceptual site model and delineating the lateral and vertical extent of soil and/ or groundwater contamination at each area of concern, then further investigations may be recommended to further reduce uncertainties for remediation planning.

Step 6 – Specify Performance or Acceptance Criteria that the Data need to Achieve

Acceptable limits on decision error have been developed based on the Data Quality Indicators (DQIs) of precision, accuracy, representativeness, comparability and completeness. The DQIs for this investigation are outlined below. The potential for significant decision errors were minimised by:

- Completion of a quality assurance/ quality control (QA/QC) assessed of the investigation data to assess if the data satisfies the DQIs;
- Assessment of whether appropriate sampling and analytical densities were completed for the purposes of the investigation; and
- Ensuring that the criteria set for the investigation were appropriate for the proposed use of the Site.

Step 7 – Optimisation of the Design for Collection of Data

The collection of data will be optimised via the use of targeted and systematic sampling of soil and groundwater at the site. The data collection design (or sampling plan) is outlined in Section 5.

5 Sampling Plan

The sampling plan for this Stage 2 Phase 2 ESA is outlined below and the following steps have been undertaken:

- Step 1: Identify areas of concern from the Phase 2 ESA requiring additional investigations. Assessment of the Phase 2 ESA results against the updated soil and groundwater criteria provided in NEPM (2013) is required as part of this step (Section 5.1);
- Step 2: Complete a data gap analysis to identify potential areas of concern that were not assessed in the Phase 2 ESA as the smelter was operational at the time of that investigation (Section 5.2);
- Step 3: The areas of concern identified in the data gap analysis generally comprise buildings used in smelter operations. Complete a walkover of these buildings to assess potential for contamination to soil and/ or groundwater (Section 5.3).
- Step 4: Based on the results of Steps 1, 2 and 3, identify areas of concern requiring assessment in this Stage 2 Phase 2 ESA including any limitations for sampling.
- Step 5: For each area of concern, stipulate the following:
 - Media to be sampled (soil, groundwater or both);
 - Type of sampling (judgemental, grid-based or combination of both)
 - Number of samples to be collected;
 - Targeted depth of sampling;
 - Chemicals for laboratory analysis;

5.1 Assessment of Phase 2 ESA Results against NEPM (2013)

An assessment of areas of concern against relevant guidelines was completed as part of the Phase 2 ESA. Table 8.3 of ENVIRON (2012) detailed identified soil and groundwater contamination. As updated guidelines were introduced in 2013, the identified soil and groundwater contamination have been re-assessed against NEPM (2013) in Table 5.1.

In addition, ENVIRON completed a Health Risk Assessment for fluoride in 2013, which developed a preliminary screening criteria for fluoride in soil for a range of landuses, including a preliminary screening criteria of 17,000mg/kg for commercial/ industrial landuse. Fluoride contamination in soil has been re-assessed using the preliminary screening criterion of 17,000mg/kg.

Table 5.1 does not include a re-assessment of groundwater contamination, as the guidelines for groundwater under NEPM (2013) have not changed from NEPM (1999). Note that Table 5.1 does not include areas of concern identified in the Phase 2 ESA that have been assessed further separately (see Section 2).

No. Area of Concern		Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required? Yes, for fluoride and PAHs in shallow soil.	
2	Anode Waste Pile				
3	Refuelling Area	TPH concentrations of 3360mg/kg at 0.15-0.3m depth in shallow soil elevated above the adopted guideline of 1000mg/kg. Fluoride concentrations in fill samples range between 90mg/kg and 3240mg/kg in soils between 0m and 0.3m depth. Fluoride concentrations in underlying natural soils of 60mg/kg to 830mg/kg.	The volatile TPH fraction C6-C10 is below the laboratory practical quantitation limit (PQL) then therefore below NEPM (2013) soil health screening levels for vapour intrusion for commercial/ industrial landuse. Heavy fraction TPH >C10-C16 soil health screening levels for commercial/ industrial landuse are non limiting (NL), indicating no potential vapour intrusion issues with the underground storage tanks. The heavy fraction TPH C15-C28 and C29-C36 concentrations are below Management Limits concentrations. The fluoride concentrations are below the preliminary screening criteria of	No, as TPH and fluoride concentrations do not exceed revised criteria.	

No.	Area of Concern	Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?		
			17,000mg/kg.			
4	Diesel Spray Area	Elevated TPH concentrations ranging between 2020mg/kg and 3760mg/kg above the adopted guideline of 1000mg/kg. Elevated BaP concentrations ranging between 19.2mg/kg and 101mg/kg and Total PAH concentrations of 205mg/kg and 963mg/kg in shallow fill material above the site guidelines of 5mg/kg and 100mg/kg respectively.	The volatile TPH fraction C6-C10 is below the laboratory practical quantitation limit (PQL) then therefore below NEPM (2013) soil health screening levels for vapour intrusion for commercial/ industrial landuse. Heavy fraction TPH >C10-C16 soil health screening levels for commercial/ industrial landuse are non limiting (NL), indicating no potential vapour intrusion issues with the diesel spray area. The heavy fraction TPH C15-C28 and C29-C36 concentrations are below Management Limits concentrations. BaP concentrations in shallow soil exceed the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg.	Yes, for PAHs in shallow soil.		
5	Drainage Lines	Elevated BaP concentrations ranging between 15.1mg/kg and 85.6mg/kg and Total PAH concentrations ranging between 123mg/kg and 996mg/kg in sediment in drainage lines adjacent to Anode Waste Pile above the site	BaP concentrations in sediment in drainage lines associated with the Anode Waste Pile and the Alcan Mound exceed the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than	No, based on current sampling results all sediments in drain near the Anode Waste Pile and Alcan Mound are assume to contain elevated		

No.	Area of Concern Previously Identified Soil Contamination		Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?	
		guidelines. Fluoride concentrations in sediment ranging between 520mg/kg and 7350mg/kg.	NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	concentrations of PAHs and require remediation.	
6	East Surge Pond	Elevated BaP ranging between 16mg/kg and 21.7mg/kg and Total PAH concentration ranging between 171mg/kg and 475mg/kg in sediments above the site guidelines. Fluoride concentrations in sediment ranging between 210mg/kg and 3010mg/kg. Fluoride concentrations in natural soil of 210mg/kg.	 BaP concentrations in one sediment sample exceed the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg. 	Yes, for PAHs in dam sediments.	
7	Northern Dams 1 and 2	Elevated concentrations of BaP (7.4mg/kg) and PAH (122mg/kg) in one composite sample. Average concentrations indicate acceptable concentrations present. Fluoride concentrations in sediment ranging between 860mg/kg and 1880mg/kg. Fluoride concentrations in natural soils ranging between 340mg/kg and 7350mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, PAH and fluoride concentrations do not exceed revised criteria.	

No. Area of Concern		Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?	
8	Carbon Plant	Elevated concentrations of BaP (33.6mg/kg) and Total PAHs (387mg/kg) in shallow fill material adjacent to the green mix plant above the site guidelines. Fluoride concentrations in shallow fill ranging between 150mg/kg and 7740mg/kg. Fluoride concentrations in natural soil ranging between 60mg/kg and 650mg/kg.	S of BaP PAHs (387mg/kg) djacent to the he site guidelines.BaP concentration in one shallow soil sample at the western end of the Carbon Plant exceeds the NEPM (2013) TEQ of 40mg/kg for commercial/ industrial landuse. Total PAHs are less than NEPM (2013) HIL D criterion of 4000mg/kg.g/kg and ncentrations inD criterion of 4000mg/kg.		
9	Cathode Bar Washdown Area	Elevated concentrations of BaP (8.9mg/kg) and Total PAHs (149mg/kg) in shallow fill material above the site guidelines. Fluoride concentrations in shallow fill of 10600mg/kg. Fluoride concentrations in underlying topsoil of 190mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, as PAH and fluoride concentrations are below revised criteria.	
10	Flammable Liquids Store	Fluoride concentrations in shallow fill ranging between 700mg/kg and 16200mg/kg from 0.1m to 0.4m depth.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, as fluoride concentrations are below revised criteria.	
11	Washdown Bay	Fluoride concentrations in shallow fill ranging between 960mg/kg and 39000mg/kg from 0m to 0.8m depth.	Fluoride concentrations in one shallow soil sample exceed the preliminary screening criteria of 17,000mg/kg.	Yes, for fluoride in shallow soil.	

No.Area of Concern12Pot Lines 2 and 3		Previously Identified Soil Contamination	Soil Contamination Identified under NEPM (2013)	Additional Investigations Required?Yes, for fluoride in shallow soil.	
		Fluoride concentrations in shallow fill ranging from 13400mg/kg and 41900mg/kg from 0m to 0.05m depth.	Fluoride concentrations in three of four shallow soil samples exceed the preliminary screening criteria of 17,000mg/kg.		
15	West Surge Pond	Fluoride concentrations in sediment ranging from 5850mg/kg to 38500mg/kg.	Fluoride concentrations in one of two sediment samples exceed the preliminary screening criteria of 17,000mg/kg.	Yes, for fluoride in sediment.	
18	Pot Rebuild Area	None identified. Fluoride concentrations of 190mg/kg in shallow fill.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride concentrations are below revised criteria.	
19	Clay Borrow Pit	None identified. Fluoride concentrations ranging between 190mg/kg and 2120mg/kg in shallow fill.	Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride concentrations are below revised criteria.	
21	Irrigation Area	Elevated BaP concentration of 1.2mg/kg in shallow soil above the residential guideline of 1mg/kg. Elevated zinc concentration of 26mg/kg in shallow soil above the phytotoxicity-based guideline (EIL) of 200mg/kg. Fluoride concentrations in surface soils ranging between 200mg/kg and 510mg/kg.	BaP and Total PAH concentrations are below NEPM (2013) HIL D guidelines. Fluoride concentrations are below the preliminary screening criteria of 17,000mg/kg.	No, fluoride and PAH concentrations are below revised criteria.	

Hydro Aluminium Kurri Kurri Smelter, Sampling Analysis and Quality Plan

Hydro Aluminium Kurri Kurri Pty Ltd June 2014

Page 16

ENVIRON

The re-assessment completed in Table 5.1 indicates that soil contamination issues relating to PAHs and fluoride are no longer an issue at Northern Dams 1 and 2, Cathode Bar Washdown Area, Flammable Liquids Store, Pot Rebuild Area, the Clay Borrow Pit and the Irrigation Area. No further investigations shall be undertaken at these areas.

5.2 Data Gap Analysis

At the time of the Phase 2 ESA, some areas of the site were not accessible for investigation as the smelter was in operation. Now that the smelter is in a care and maintenance mode, previously inaccessible areas of the site may require assessment as part of the Stage 2 Phase 2 ESA. Review of the smelter operations has identified the following potential areas of concern that require assessment:

- The Carbon Plant, including the Greenmix Building, the Rodding Building, Ring Furnace Building and Green & Baked Anode Storage Building;
- Casting Plant Building;
- Ring Furnace Scrubber;
- Metal Storage Pads;
- Maintenance Workshop and Boilermakers shop;
- Petroleum Coke Storage;
- Potroom Services Workshop;
- Potline Raw Material Storage;
- Bath Crushing Plant;
- Dross Storage Building;
- Butt Cleaning Building;
- Casting Alloy Storage Shed;
- Anode Storage Building;
- Playing Fields, area east of playing fields and area east of Clay Borrow Pit (filled areas);
- Areas of accessible soil (i.e. garden beds).

A site visit was completed on 7 May 2014 to assess the condition of the buildings identified above, including the floor material, condition of the floor, location of pits, sumps or other underground structures and an assessment of the potential for soil and/ or groundwater contamination associated with each building. The results of the site visit are documented in Table 5.2.

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination
-	Metal Storage Pads (South and East)	Storage of aluminium billet	Bitumen	Good	Low
73C	Casting Maintenance Storage Sheds	Storage of materials used in aluminium casting	Concrete	Fair, one larger crack in eastern shed	Low
74C	Casting Alloy Storage Sheds	Storage of metals (iron, copper, chrome) used in aluminium casting	Concrete	Fair, small cracks	Low
3A/B/C	Potroom Buildings	Smelting of aluminium	Concrete	Fair	Low
3AN/BN/CN, 3AS/BS/CS/BC/CC, 29A/C, 65C, 68C	Substations	Substation buildings	Gravel for earthing	Fair	Medium, oils containing PCBs have been replaced but remnant oil likely
43BS	Dry Scrubber Plant	Scrub aluminium gases from pot lines	Bitumen	Poor	High, alumina dust (fluoride) observed settled on ground surface
95A	Washdown Bay	Wash down and parking of pot line vehicles	Bitumen	Fair	Low, as built in last 5 years
40A	Cathode Rodding Building	Storage of cathodes	Thick concrete	Good	Low

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination
44B	Pot Line Maintenance	Oil storage	Thick Concrete	Good	Low
4A/B/C	Cast House	Casting aluminium metal	Thick concrete	Good	Low
64C	Mobile Vehicle Workshop	Vehicle maintenance	Concrete	Good	Medium due to mechanics pit with sump
26A/B/C	Engineering Building and Workshops	Maintenance workshop for fitters, boilermakers and components repair	Concrete	Good	Low
46A	Carbon Plant Maintenance Workshop	Maintenance of carbon plant equipment	Thick concrete	Good	Low
5A	Greenmix Plant	Forming anodes, includes delivery of liquid pitch, agitation and pouring into moulds	Concrete	Good	High for PAHs in accessible soil otherwise low
8A/B	Rodding Building	Adding rods to anodes	Thick concrete	Good	Medium due to below ground butt crushing plant, oily residue on floor
8C	Baked Anode	Storage of baked	Concrete	Good	Low

Building No.	Building Name	Use	Floor Material	Condition of Floor Material	Potential for Soil or Groundwater Contamination
	Storage	anodes			
7A/B/C	Carbon Plant	Baking anodes	Concrete	Good	Low
60C	Ring Furnace Scrubber	Dry scrubbing of gases from the ring furnace, scrubber waste bunker	Concrete	Good	High for fluoride and PAHs in accessible soil
65C	Butt Cleaning Building	Cleaning anode butts prior to crushing	Concrete	Not seen, currently used for anode storage	Low
1A/B/C	Switchyard	To step down high voltage electricity	Concrete	Good	Low

5.3 Potential Areas of Environmental Concern

Table 5.3 outlines the Potential Areas of Environmental Concern (PAEC) identified at the site during the previous Phase 2 ESA and from the data gap analysis. Table 5.3 includes the area of each PAEC, the buildings, type of ground surface and limitations for sampling.

It is noted that the main limitation for sampling is overhead and underground services. The location of these services may mean that planned sampling locations have to be moved during the field investigations.

No.	PAEC	Area (m ²)	Buildings	Ground Surface	Limitations for Sampling
2	Anode Waste Pile	6,400	None	Gravel	The ground surface beneath the Anode Waste Pile cannot be sampled until the pile is removed.
3	Refuelling Area	600	Low roofed canopy structure.	Bitumen. There is a garden bed immediately to the west.	The UST and associated infrastructure remains in the ground. There is a low roofed canopy over the refuelling area that will prevent the drill rig from raising its mast.
4	Diesel Spray Area	200	Low roofed canopy	Fill soils and bitumen	There is a low roofed canopy structure over the area that will prevent the drill rig from raising its mast. There are services within the vicinity that were an issue in the Phase 2 ESA.
6	East Surge Pond	4,400	None	Sediment	None
8	Carbon Plant (western end only)	96,000	Ring Furnace Building, Rodding Building, Green & Baked Anode Storage Building, Greenmix Building, Workshops and Control Rooms	Concrete/ bitumen	Underground and overhead services, sampling will be limited to accessible soils only

No.	PAEC	Area (m ²)	Buildings	Ground Surface	Limitations for Sampling
11	Washdown Bay	900	None	Concrete	Underground services
12	Pot Lines 1, 2 and 3	180,950	Three pot lines	Bitumen and fill soils	Sampling within the pot lines is not required. Sampling will be limited to accessible soil between the pot lines.
15	West Surge Pond	4,875	None	Sediment	None
25	Dry Scrubbers (6 separate locations between pot lines)	3,450 per location	Overhead infrastructure	Mix of bitumen and grass	Underground/ overhead services
26	Ring Furnace Scrubber	6,550	Overhead infrastructure	Mix of concrete and grass	Underground/ overhead services
27	Substations	Approx. 50 per substation	Each generally includes a building	Gravel	Underground/ overhead services
28	Playing Fields (two adjacent)	8,100 per oval	None	Grass/ fill soils	None
29	Area East of Playing Fields	9,900	None	Grass/ fill soils	None
30	Area east of Clay Borrow Pit	31,900	None	Grass/ fill soils	None
31	Storage Area west of	44,000	None	Mix of compacted fill and	Underground/ overhead services

Table 5.3: Potential Areas of Environmental Concern Requiring Investigation					
No.	PAEC	Area (m ²)	Buildings	Ground Surface	Limitations for Sampling
	Pot Lines			hardstand	
32	Garden beds	NA	None	Fill soils	Underground/ overhead services

5.4 Sampling Program

Table 5.3 outlines the Potential Areas of Environmental Concern (PAEC) identified at the site during the previous Phase 2 ESA and from the data gap analysis. The location of each PAEC and planned sampling locations are shown in Figures 2 to 12.

It is noted that aside from the seven new wells planned in Table 5.3, a round of groundwater sampling will be completed on the existing wells installed during the Phase 2 ESA.

No.	PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
2	Anode Waste Pile	6,400	Soil	Stratified sampling around outside of stockpile for delineation of contamination	8	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m.	Fluoride, PAHs
			Groundwater	Judgemental down gradient sampling	2 wells		PAHs
3	Refuelling Area	600	Groundwater	Down gradient sampling	3 wells		TPH, PAHs
4	Diesel Spray Area	200	Soil	Stratified sampling to delineate contamination	8	Soils to 1m, samples collected from 0-0.1m, 0.4-0.5m, 0.8-0.9m	PAHs
6	East Surge Pond	4,400	Sediment		om the East Surge	ring the Phase 2ESA, EN Pond once the sediments	
8	Carbon Plant (western end only)	96,000	Accessible soil	Grid-based sampling of accessible soils to delineate contamination	15	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	PAHs
			Groundwater	Sampling within former rodding building	3 wells		PAHs

No.	PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
11	Washdown Bay	900	Soil	Grid-based sampling to assess contamination	4	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride
12	Pot Lines 1, 2 and 3	180,950	Accessible soil	Stratified sampling where accessible to delineate contamination	10	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m	Fluoride
15	West Surge Pond	4,875	Sediment	Due to sampling difficulties encountered during the Phase 2ESA, ENVIRON recommend sampling of sediments from the West Surge Pond once the sediments have been excavated and stockpiled.			
25	Dry Scrubbers (6 separate locations between pot lines)	3,450 per location	Soil	Judgemental sampling to assess contamination	24, 4 per location	Surface soils to 0.5m, samples collected from 0-0.1m, 0.1-0.2m and 0.3-0.4m	Fluoride
26	Ring Furnace Scrubber	6,550	Soil	Grid-based sampling to assess contamination	10	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride, PAHs

No.	PAEC	Area (m ²)	Media to be Sampled	Type of Sampling	No. of Sample Locations	Targeted Depth/ Sample Depths	Laboratory Analysis
28	Playing Fields (two adjacent)	8,100 per oval	Soil	Grid-based sampling to assess contamination	10 locations per field	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
29	Area East of Playing Fields	9,900	Soil	Grid-based sampling to assess contamination	10	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
30	Area east of Clay Borrow Pit	28,500	Soil	Grid-based sampling to assess contamination	10	Full depth of fill, samples to be collected within fill	Heavy Metals, PTH, BTEX, PAHs, fluoride
31	Storage Area west of Pot Lines	44,000	Soil	Grid-based sampling to assess contamination	14	Surface soils to 0.5m, samples collected from surface, 0.1m, 0.15m and 0.2m and 0.4m	Heavy Metals, PTH, BTEX, PAHs, fluoride
32	Garden beds	NA	Soil	Grid-based sampling to assess contamination	1 per garden bed not included in other PAECs, estimate of 20	Surface soils to 0.5m, samples collected from 0-0.1m and 0.3- 0.4m	Fluoride, PAHs

5.5 Sampling

5.5.1 Soil Sampling Methodology

The fieldwork methodology for soil sampling is outlined in Table 5.5.

Table 5.5: Soil Sampling Methodology				
Activity	Details			
Subsurface clearance	A Dial Before You Dig underground services check will be completed prior to fieldwork. Sample locations will be marked out and cleared by a suitably qualified and experienced locator prior to the commencement of subsurface works. Sampling locations that need to be moved due to underground or overhead services will be relocated at the time of the subsurface clearance.			
Concrete coring	Coring of surface concrete will be completed at sampling locations requiring this work prior to the commencement of fieldwork.			
Drilling and hand augering	The majority of the sampling locations will be drilled using pushtubes to the required depth of the investigation. Hollow augers will be used where possible to complete the boreholes that will be completed with groundwater monitoring wells. Where access with a drill rig is restricted or only surface samples are required, soil samples will be collected by hand auger.			
Test Pitting	A back hoe will be used to test pit the playing fields. Test pits will be extended through fill material into natural soils. Test pits will be backfilled and track rolled on completion.			
Soil logging	 Soil logging will be undertaken by a suitably qualified and experienced environmental scientist from ENVIRON. It is intended that the environmental scientist from ENVIRON will be the same person who completed fieldwork for the Phase 2 ESA. The approximate location of sampling locations will be recorded by measuring the distance from known locations e.g. buildings or fences. 			

Activity	Details
Soil sampling	Soil samples will be collected from suitable locations at each borehole. Where the mechanism of contamination is from the surface of the site into the soil, soil samples will be collected from the surface (0.0-0.1m) and from a depth around 0.5m. Where the mechanism of contamination is associated with an underground structure such as a UST, soil samples will be collected from the depth at which contamination is likely to be present. Soil samples will be collected using dedicated disposable gloves into laboratory-supplied glass jars.
Soil screening	A Photoionisation Detector (PID) will be used to screen soil samples for the presence of volatile contaminants in areas where volatile contaminants are of concern. Sample material will be placed into a plastic bag and sealed for soil screening.
Decontamination	Reusable sampling equipment (if any) will be decontaminated by washing with Decon90 and rinsing with potable water between samples.
Disposal of soil	Spoil will be returned to the boreholes.

Table 5.5: Soil Sampling Methodology

5.5.2 Groundwater Sampling Methodology

The fieldwork methodology for groundwater sampling is outlined in Table 5.6.

Activity	Details
Well installation	The groundwater wells will be extended from the boreholes to approximately 1m below the groundwater table using solid flight augers. The wells will be constructed using machine slotted 50mm PVC screen from the base of the well to 0.5m pass the intercepted groundwater depth and screw threaded 50mm PVS casing will be extended to the surface.
	The well annulus will be backfilled with 2mm graded sand to approximately 1m past the top of the screen, followed by bentonite backfill to the surface. A lockable steel monument will be concreted in over the well access.
Well gauging	Monitoring wells will be gauged using an oil/water interface probe. The interface probe will be decontaminated between each measurement.
Well purging	Groundwater purging and sampling will be completed approximately one week following well installation. Water will be purged from each monitoring well using peristaltic sampling equipment until the groundwater parameters have stabilised. Groundwater parameters including pH, temperature, dissolved oxygen, redox potential and electrical conductivity will be recorded using a water quality meter during purging.
Sampling method	Following stabilization of groundwater parameters, sampling will be completed using peristaltic techniques. Groundwater samples will be collected into laboratory- supplied bottles that are preserved as required.
Decontamination	Dedicated tubing will be used per well. Decontamination of re-useable sampling equipment will be completed using Decon90 and rinsing with potable water.
Disposal of water	Groundwater collected during purging and sampling will be disposed of to land down gradient of the well following sampling.

5.5.3 Sample Handling and Preservation

The following sample handling and preservation procedures will be used:

- The use of a new pair of disposable nitrile gloves to handle each soil and groundwater sample;
- Soil samples are to be placed immediately into laboratory-supplied acid-rinsed glass jars;
- Groundwater samples are to be placed immediately into laboratory-supplied appropriately-preserved bottles;
- Sample jars and bottles are to be fill so that no headspace remains;
- Sample jars and bottles are to be stored in chilled, insulated containers with ice for transportation to the laboratory;
- Sample numbers, depths, preservation and analytical requirements are to be recorded on chain of custody documents;
- Samples jars and bottles are to be transported to the laboratory under chain of custody conditions.

6 Data Quality Indicators

The project Data Quality Indicators (DQIs) have been established to set acceptance limits on field and laboratory data collected as part of this investigation. Field and laboratory procedures acceptance limits are set at different levels for different projects and by different laboratories. Non-compliance with acceptable limits are to be documented and discussed in the Stage 2 Phase 2 ESA report. The DQIs are presented in Table 6.1.

Table 6.1	: Data Quality Indicators		
DQI	Field	Laboratory	Acceptability Limits
Completeness	All critical locations sampled, All samples collected Experienced sampler Documentation correct	All critical samples analysed and all analytes analysed according to Standard Operating Procedures (SOPs) Appropriate Practical Quantitation Limits (PQLs) Sample documentation complete Sample holding times complied with	As per NEPM (2013)
Comparability	Experienced sampler In the event of multiple sampling events: Same types of samples collected Same sampling methodologies used Climatic conditions	Same analytical methods used Same PQLs Same units Same primary and secondary laboratories	As per NEPM (2013)
Represe ntativene ss	Appropriate media sampled Relevant media sampled	All samples analysed according to SOPs	
Precision	Collection of duplicate samples Sampling methodologies appropriate and complied with	Analysis of: Blind duplicate samples at rate of 1 in 10 samples Split duplicate samples at rate of 1 in 20 samples Laboratory duplicate samples	RPD of 30 to 50% RPD of 30 to 50% RPD of 30 to 50%
Accuracy	Sampling methodologies appropriate and complied with.	Analysis of: Method blanks Matrix spikes Surrogate spikes Laboratory control samples Reagent blanks Reference material	Non-detect 70 to 130% 70-130% 70 to 130%

7 Basis for Assessment Criteria

7.1 Soil

The criteria proposed for the assessment of soil contamination were sourced from the following references:

• National Environment Protection Council (2013) National Environmental Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1) (NEPM).

The variation to the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM 2013) was approved on 19 June 2013 by the NSWEPA under the *Contaminated Land Management Act 1997.* NEPM (2013) provide revised health-based soil investigation levels (HILs) and ecological-based investigation levels (EILs) for various land uses. The NEPM 2013 also introduces health-based and ecological screening levels and management limits for petroleum hydrocarbons (HSLs and ESLs). The levels have been derived from recent assessments that more accurately define the exposure mechanisms and risks from sites contaminated with petroleum hydrocarbons.

The guidelines adopted for the site from the NEPM are as follows:

- HIL D Health investigation level for commercial/industrial such as shops, offices, factories and industrial sites. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally to a depth of 3 m below the surface for industrial use.
- HSLs for commercial/industrial use Health screening levels for soil vapour intrusion from petroleum hydrocarbons are guidelines that prevent accumulation of vapours at concentrations that may represent a health risk. The HSLs are derived for various depths and are for the same generic land uses as for the HILs. The guidelines are relevant were soils are beneath building or structures such as confined spaces;
- EIL for commercial/ industrial use ecological investigations levels applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and generally apply to the top 2 m of soil.
- ESLs for commercial/ industrial use ecological screening levels developed for selected petroleum hydrocarbon compounds and fractions and are applicable for assessing risk to terrestrial ecosystems. These are also generally applicable to the top 2m of soil.
- Management Limits where concentrations above these limits may indicate poor aesthetics, high odour and potentially explosive vapour. Management limits are to be applied after consideration of relevant ESLs and HSLs.

The applicable assessment criteria for heavy metals and PAHs in soil are presented in **Table 7.1**:

Table 7.1: Soil Assessment Criteria (mg/kg) – Health and Ecological Investigation Levels					
	HIL D	EIL			
Arsenic	3000	160			
Cadmium	900	-			
Chromium (VI)	3600	320 (CR III, 1% clay)			
Copper	240 000	130			
Lead	1500	1800			
Nickel	6000	40			
Zinc	400 000	380			
Mercury (inorganic)	730	-			
Fluoride	Ref 7. 5	Ref Table 5			
Cyanide (free)	1500	-			
Carcinogenic PAHs (as BaP TEQ)	40	-			
Total PAHs	4000	-			
DDT+DDE+DDD	3600				
Aldrin +dieldrin	45				
Chlordane	530				
Endosulfan	2000				
Endrin	100				
Heptachlor	50				
Methoxychlor	2500				
Chlorpyrifos	2000				

1 EILs represent the most conservative value possible as the lowest value for added contaminant limit (ACL) was used and the ambient background concentration (ABC) was not added, with the exception of zinc and copper, where the EIL was calculated by adding the ACL with the estimated ABC using the NEPM (2013) EIL Calculation Spreadsheet .

Table 7.2: Soil Assessment Criteria for Vapour Intrusion - HSL D (mg/kg) - Sand						
	0 to <1m	1m to <2m	2m to <4m	4m+		
Toluene	NL	NL	NL	NL		
Ethylbenzene	NL	NL	NL	NL		
Xylenes	230	NL	NL	NL		
Naphthalene	NL	NL	NL	NL		
Benzene	3	3	3	3		
F1(4)	260	370	630	NL		
F2(5)	NL	NL	NL	NL		

The applicable assessment criteria for petroleum hydrocarbons in soil are presented in **Table 7.2** and **Table 7.3**:

1 The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the
derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

2 (For soil texture classification undertaken in accord with AS 1726, the classifications of sand, silt and clay may be applied as coarse, fine with liquid limit <50% and fine with liquid limit>50% respectively, as the underlying properties to develop the HSLs may reasonably be selected to be similar. Where there is uncertainty, either a conservative approach may be adopted or laboratory analysis should be carried out.

3 To obtain F1 subtract the sum of BTEX concentrations from the C6-C10 fraction.

4 To obtain F2 subtract naphthalene from the >C10-C16 fraction.

TPH fraction	Soil texture	ESLs (mg/kg dry soil)	Management Limits ¹ (mg/kg dry soil)
		Commercial and Industrial	Commercial and Industrial
F1 C6- C10	Fine	215*	800
F2 >C10-C16	Fine	170*	1000
F3 >C16-C34	Fine	2500	5000
F4 >C34-C40	Fine	6600	10 000
Benzene	Fine	95	-
Toluene	Fine	135	-
Ethylbenzene	Fine	185	-
Xylenes	Fine	95	-
Benzo(a)pyrene	Fine	0.7	-

¹ Management limits are applied after consideration of relevant ESLs and HSLs.

² Separate management limits for BTEX and naphthalene are not available hence these should not be subtracted from the relevant fractions to obtain F1 and F2.

³ ESLs are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability.

⁴ To obtain F1, subtract the sum of BTEX from C6-C10 fraction and subtract naphthalene from >C10-C16 to obtain F2.

The HSLs for asbestos are applicable for assessing human health risk via the exposure pathway of inhalation of airborne asbestos and are presented in **Table 7.4**. The HSLs are generic to all soil types.

Table 7.4. Health Scr	Screening Levels for Asbestos Contamination in Soil (w/w)			
Form of asbestos	Residential A ¹	Residential B ²	Recreational C ³	Commercial/ Industrial D⁴
Bonded ACM	0.01%	0.04%	0.02%	0.05%
FA and AF ¹ (friable asbestos)	0.001%			
All forms of asbestos	No visible asbestos for surface soil			

1. The screening level of 0.001% w/w asbestos in soil for FA and AF (i.e. non-bonded/friable asbestos) only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.

NEPM (2013) do not provide criteria for fluoride in soils in Australia. Therefore, ENVIRON (2013) conducted a preliminary level Human Health Risk Assessment (HRA) specific to fluoride in order to derive a specific preliminary screening level for fluoride for the Hydro

Aluminium Kurri Kurri Smelter . The screening levels are protective of the range of human receptors and are provided in **Table 7.5**:

Table 7.5: Site Specific Soil Assessment Guidelines for Fluoride (mg/kg)			
Preliminary screening levels			
Land Use Preliminary screening level			
Commercial/ industrial - soil F 17000mg/kg			

Consistent with the guidance provided in the NEPM, the data was assessed against the above adopted site guidelines by:

- Comparing individual concentrations against the relevant guidelines and if discrete samples are in excess of the relevant guideline then;
- Comparing the 95% upper confidence limit of mean against the relevant guideline also ensuring that:
 - $\circ\,$ the standard deviation of the results is less than 50% of the relevant investigation or screening level, and
 - $_{\odot}$ no single value exceed 250% of the relevant investigation or screening level.

8 **Reporting Requirements**

At the completion of the Stage 2 Phase 2 ESA, a report shall be provided that includes the following information, in accordance with NSW OEH (2011) Guidelines for Consultants Reporting on Contaminated Sites:

- Executive summary;
- Scope of work;
- Site identification;
- Summary of previous investigations, including a summary of the site history, site condition, surrounding environment, geology and hydrogeology;
- A summary of this SAQP and sampling methodologies;
- Field and laboratory QA/QC;
- QA/QC data evaluation;
- Basis for assessment criteria;
- Results;
- Site characterisation, including updated conceptual site model;
- Requirements for remediation;
- Conclusion and recommendations.

The Stage 2 Phase 2 ESA report will comply with the requirements of NSW DEC (2006) Contaminated Sites: Guidelines for the NSW Site Auditor Scheme.

Page 39

9 References

- ENVIRON (March 2012) 'Sampling, Analysis and Quality Plan, Kurri Kurri Aluminium Smelter'
- ENVIRON (1 November 2012) 'Phase 2 Environmental Site Assessment, Kurri Kurri Aluminium Smelter
- ENVIRON (2 April 2013) 'Preliminary Screening Level, Human Health Risk Assessment for Fluoride and Aluminium, Part of the Kurri Kurri Aluminium Smelter, Hart Road, Loxford'
- NEPM (2013) 'Schedule B1: Guideline on Investigations Levels for Soil and Groundwater'

10 Limitations

ENVIRON Australia prepared this report in accordance with the scope of work as outlined in our proposal to Hydro Aluminium Kurri Kurri Pty Ltd dated June 2014 and in accordance with our understanding and interpretation of current regulatory standards.

A representative program of sampling and laboratory analyses was undertaken as part of this investigation, based on past and present known uses of the site. While every care has been taken, concentrations of contaminants measured may not be representative of conditions between the locations sampled and investigated. We cannot therefore preclude the presence of materials that may be hazardous.

Site conditions may change over time. This report is based on conditions encountered at the site at the time of the report and ENVIRON disclaims responsibility for any changes that may have occurred after this time.

The conclusions presented in this report represent ENVIRON's professional judgment based on information made available during the course of this assignment and are true and correct to the best of ENVIRON's knowledge as at the date of the assessment.

ENVIRON did not independently verify all of the written or oral information provided to ENVIRON during the course of this investigation. While ENVIRON has no reason to doubt the accuracy of the information provided to it, the report is complete and accurate only to the extent that the information provided to ENVIRON was itself complete and accurate.

This report does not purport to give legal advice. This advice can only be given by qualified legal advisors.

10.1 User Reliance

This report has been prepared exclusively for [INSERT COMPANY NAME] and may not be relied upon by any other person or entity without ENVIRON's express written permission.

Figures

- New soil locations
- Existing sampling locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 2 - Anode Waste Pile

JOB NO: AS130328

DATE: May 2014

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 4 – Diesel Spray Area

JOB NO: AS130328

DATE: May 2014

- New soil locations Δ
- Existing sampling locations

AEC 8 – Carbon Plant

JOB NO: AS130328

DATE: May 2014

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 12 – Pot Lines and AEC 25 – Dry Scrubbers

- ▲ New soil locations AEC 25
- ▲ New soil locations AEC 12
- Existing sampling locations

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESAAEC 26 – Ring furnace ScrubberSenvironJOB NO: AS130328DATE: May 2014FIGURE 9

SENVIRON

JOB NO: AS130328

FIGURE 10

Δ

New soil locations

Δ

AEC 29 – Area East of Playing Fields

DATE: May 2014

▲ New soil locations

N

Hydro Aluminium Kurri Kurri – Stage 2 Phase 2 ESA

AEC 31 – Storage Area West of Clay Borrow Pit

JOB NO: AS130328

DATE: May 2014

Appendix C

Field Methodologies

1 Field Methodology

1.1 Soil Sampling

The fieldwork methodology for soil sampling is outlined in Table A.1.

Activity	Details
Soil Logging	Soil logging was undertaken by two suitably qualified and experienced environmental scientists from ENVIRON. The push tube drilling locations were logged by Kirsty Greenfield, who completed the fieldwork for the 2012 Phase 2 ESA. Kirsty has 12 years experience as an environmental scientist. The test pit and hand auger locations were logged by Kate Woods, who has 7 years of experience as an environmental scientist.
Intrusive Investigation	Three intrusive investigation methods were used during this investigation: drilling, hand augering and test pitting.
Methods	Test pitting was completed using a back hoe to excavate through fill material (where present) into natural soil. Test pitting was completed in large open areas of the Smelter Site, such as the playing fields, the area next to the playing fields and the storage area west of Pot Line 3.
	Boreholes were drilled using pushtubes to the required depth of the investigations in areas of the Smelter Site not accessible for test pitting. Solid flight augers were used to complete the boreholes that were completed as groundwater monitoring wells.
	Where shallow sampling was required in grassed areas of the Smelter Site, soil samples were collected by hand auger to a depth of 0.5m bgs or prior refusal.
Soil Sampling	Soil sampling was completed as per the requirements of Table 5.4 of the SAQP (June 2014). This table indicates the depth at which soil samples are to be collected for each AEC.
Soil Screening	Screening of soil samples for the presence of volatile contaminants was not undertaken, as volatile contaminants were not the main chemicals of concern.
Decontamination	A hand auger was the only non-disposable sampling equipment used. The hand auger was decontaminated by washing in a Decon90 solution and rinsing with water between samples.
Disposal of Soil	Test pits were backfilled with spoil and track rolled. Spoil was returned to the boreholes, where possible. Excess spoil was collected into a bin on site for disposal by Hydro personnel.

1.2 Groundwater Sampling

The fieldwork methodology for groundwater sampling is outlined in Table A.2.

Activity	Details
Well Installation	The groundwater wells were extended from the boreholes to approximately 2m below the top of groundwater using solid flight augers.
	The wells were constructed using machine slotted 50mm PVC screen from the base of the well to 1m past the intercepted groundwater depth and screw threaded 50mm PVC casing extended to the surface.
	The well annulus was backfilled with 2mm graded sand to approximately 1m past the top of the screen, followed by bentonite backfill for approximately 1m, followed by backfill of the cuttings to the surface. Where the cuttings could not be used a backfill, bentontie backfill was used. A lockable steel monument or a gatic cover in traffic areas was concreted in over the well access.
Wee Development	Wells were developed by bailing the wells dry with a bailer.
Well Gauging	Monitoring wells were gauged using an oil/ water interface probe. The interface probe was decontaminated between each measurement.
Well Purging	Groundwater purging and sampling was completed approximately one week following well installation. A minimum of 0.5L was removed from each monitoring well using low flow peristaltic sampling equipment. Groundwater parameters, including pH, temperature, dissolved oxygen, redox potential and electrical conductivity were recorded using a water quality meter during purging.
Sampling Methods	Following stabilisation of groundwater parameters, sampling was completed using low flow techniques.
Decontamination	A short length of silicon tubing used in the peristaltic pump was decontaminated using Decon90 and potable water.
Disposal of Water	Groundwater collected during purging and sampling was disposed of to land down gradient of the well following sampling.

1.3 Groundwater Observations

During the drilling of the new wells, groundwater was encountered within estuarine sands at depths ranging between 1m and 5m bgs beneath the Smelter Site.

The newly installed and 2012 groundwater wells were gauged during groundwater sampling, as shown in Table A.3. Groundwater depths within the estuarine sands range from 10.42mAHD in MW106 to 13.81mAHD in S3A.

Groundwater in MW12 is located within sands beneath a confining clay layer at a depth of 8.17mAHD. Groundwater at this location is considered to be disconnected from the shallow aquifer.

Well ID	Screened Interval	Depth to Water (m BGL) 2012	Depth to Water (m BGL) 2014	Depth to Water (mAHD) 2012	Depth to Water (mAHD) 2014
MW01	5.3 – 11.3	3.10	NS	19.7	NS
MW03	4.8 – 10.8	4.83	NS	19.3	NS
MW04	4.5 – 10.5	1.31	NS	18.4	NS
MW05	1 – 4	2.19	NS	22.6	NS
MW06	3-6	1.55	2.54	12.2	11.23
MW07	0.5 – 3.5	1.85	2.20	13.9	13.5
MW08	0.5 – 3.5	0.97	1.32	13.8	13.48
MW09	2.5 – 5.5	2.02	2.20	13.5	13.29
MW10	3.5 - 6.5	2.94	3.15	12.3	12.14
MW11	1.4 - 4.4	1.68	1.96	14.0	13.71
MW12	11.5 – 14.5	6.99	6.53	7.7	8.17
MW13	0.9 - 3.9	1.53	1.76	13.4	13.15
MW14	4.5 – 7.5	2.94	3.25	12.4	12.07
MW15	3-6	2.42	3.05	12.1	11.42
MW16	1 – 3	0.23	0.61	14.1	13.74
MW17	3-6	0.37	1.45	14.0	12.97
MW18	0.8 - 3.8	1.85	1.73	13.6	13.74
MW19	3-6	2.20	2.38	12.1	11.88
MW20	3-6	2.38	2.63	11.9	11.64
MW21	5.6 – 11.6	3.80	NS	13.3	NS
S3B	Unknown	4.60	4.45	11.2	11.36
S3A	Unknown	1.42	1.91	14.3	13.81
MW101	2-5	-	1.76	-	13.35
MW102	1 – 4	-	1.53	-	13.56
MW103	3 – 6	-	1.79	-	13.03
MW104	1 – 4	-	1.78	-	13.18
MW105	1 – 4	-	1.02	-	13.66
MW106	2.5 – 5.5	-	4.81	-	10.42
MW107	1 – 4	-	1.43	-	13.53

NS Not Sampled; - Did not Exist

Groundwater flow in the estuarine sands aquifer at the Smelter Site has been impacted by the construction of the Carbon Plant, which involved the excavation of sands to depths of 5.6m bgl and backfilling with granular material around the concrete lined pits containing the bake furnaces. The general groundwater flow direction beneath the Smelter Site is understood to be towards the north east, flowing towards the low lying Wentworth Swamp.

Groundwater parameters were recorded during groundwater sampling, including pH, electrical conductivity (EC), redox potential, dissolved oxygen and temperature. This data is presented in Table A.4 and field sheets are included in Appendix H.

Table A.4: G	roundwater Para	ameters			
Well ID	рН	EC (µS/cm)	DO (ppm)	Redox (Eh)	Temp (°C)
MW06	6.19	24,890	1.84	157	19.6
MW07	6.22	1900	2.03	126	15.4
MW08	6.26	322	4.12	113	17.9
MW09	7.36	4590	5.04	66	18.9
MW10	6.12	10,260	1.40	107	18.9
MW11	6.71	2146	3.81	56	16.5
MW12	6.24	16,020	2.46	139	20.4
MW13	7.32	5040	3.35	50	17.9
MW14	7.14	5040	4.83	45	19.8
MW15	9.7	1954	2.39	81	19.7
MW16	6.97	458	2.88	114	17.0
MW17	6.94	888	4.43	125	18.0
MW18	5.60	234	3.16	172	16.6
MW19	6.38	1111	2.54	77	19.7
MW20	6.94	2570	6.69	78	17.3
MW21	Not Sampled	- Inaccessible due t	o parked cars		
S3A	8.13	270	9.14	81	15.3
S3B	7.13	1213	7.14	91	19.4
MW101	6.55	548	4.25	94	20.2
MW102	7.06	482	4.29	106	19.5
MW103	5.98	2210	2.02	93	17.5
MW104	6.84	2660	0.83	16	18.5
MW105	9.73	958	1.78	101	15.5
MW106	7.30	1706	1.92	95	19.9

AS130383

Table A.4: Groundwater Parameters					
Well ID	рН	EC (µS/cm)	DO (ppm)	Redox (Eh)	Temp (ºC)
MW107	5.52	604	2.06	153	16.0

The background well, MW06, which is located within the estuarine sand aquifer, has an electrical conductivity result indicating brackish water ($24,890\mu g/L$). Electrical conductivity results for other wells within the estuarine sand aquifer at the Smelter Site vary between fresh ($234\mu g/L$ and $1954\mu g/L$) and brackish water ($2146\mu g/L$ and $16,020\mu g/L$).

The background well (MW06) has a pH of 6.19. pH in on-site wells varies from 5.52 in MW107 to 9.73 in MW105. The pH range extends marginally outside the normal range for groundwater systems of 6 to 8.5.

Appendix D

QA/QC Assessment

QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance assessment for this report is presented in Table A, B and C below. An assessment was made of data completeness, comparability, representativeness, precision and accuracy based on field and laboratory considerations, as outlined in NSW DEC (2006) and NSW EPA (2007) guidelines. These Data Quality Indicators (DQIs) are outlined in Section 6 of the SAQP.

Table A: QA/QC – Sampling and Analysis Methodology Assessment			
Sampling Methodology	ENVIRON Assessment		
Sampling Pattern and Locations	Soil and groundwater samples were collected from targeted locations based on ENVIRON's assessment of PAECs and COCs completed as part of the SAQP.		
	Sampling patterns for AECs identified from the 2012 Phase 2 ESA were generally targeted to allow for the vertical and lateral delineation of contamination. Sampling patterns for PAECs identified as part of the data gap review were generally grid based to assess the potential for contamination in these areas.		
	Sampling locations were completed at the following AECs identified from the 2012 Phase 2 ESA:		
	Anode Waste Pile, Refuelling Area, Diesel Spray Area, Carbon Plant, Washdown Bay and Pot Lines.		
	It is noted that sampling locations at the Refuelling Area and Washdown Bay were limited by the locations of buildings and services. The available sampling locations did not have an adverse impact on the sampling patterns in these areas.		
	Sampling locations were completed at the following PAECs identified during the data gap review:		
	Dry Scrubbers, Bake Furnace Scrubber, Playing Fields, Area East of Playing Fields and Storage Area West of Pot Line 3.		
Sampling Density	The number of soil investigation locations at the site does not meet the minimum recommended by EPA (1995) "Sampling Design Guidelines". As the investigations are targeted to specific PAECs at the Smelter Site, use of the EPA (1995) "Sampling Design Guidelines" is not relevant in this case.		
Sample depths	Soil sample depths were targeted to either the depth at which contamination was identified in the 2012 Phase 2 ESA or the depth at which contamination was likely to be present based on the method of contamination.		
	The method of contamination for soil around the Dry Scrubbers and Bake Furnace Scrubber was considered to be aerial fallout. As such, surface soils were targeted for investigation.		
	The method of contamination for soil at the Playing Fields, Area East of Playing Fields and Storage Area West of Pot Line 3 was the potential burial of wastes. As such, test pits were excavated to the full depth of any identified fill material into underlying natural soil. Soil samples were collected from within the fill material and from natural soil.		
Sample Collection Method	Soil samples were collected from push tubes, test pits and hand augers. Soil samples from test pits were collected from the		

Sampling Methodology	ENVIRON Assessment
	centre of the backhoe bucket. Sample jars were filled using a new pair of dedicated disposable gloves for each sample.
	Groundwater samples were collected using low-flow methods (peristaltic pump). Dedicated tubing was used for each well.
Decontamination Procedures	Decontamination was not required for the push tubes or test pits as soil samples were collected directly from each push tube or from the centre of the backhoe bucket.
	The hand auger was decontaminated between the collection of samples by brushing off the soil and washing the hand auger in a solution of Decon90 and potable water.
	The small piece of tubing that was reused in groundwater sampling was decontaminated using Decon90 and potable water.
Sample handling and containers	All soil samples were placed into laboratory-supplied, acid- rinsed glass jars. Water samples were collected into laboratory- supplied bottles that contained preservatives, as required. Soil and water samples were placed on ice following collection and during transportation to the laboratory.
Chain of Custody	Samples were transported to the laboratory under chain of custody conditions. The chain of custody forms were signed by the laboratory on receipt of the samples.
Detailed description of field screening protocols	Field screening for volatiles was not completed during soil sampling as volatile contaminants were not the main chemical of concern.
Calibration of field equipment	No field equipment requiring calibration was used during this investigation.
Sampling Logs	The lithology of surface soil samples was documented on the borehole, test pit and hand auger logs, which are included in Appendix E.

Table B: QA/QC – Field and Lab Quality Assurance and Quality Control		
Field and Lab QA/QC	ENVIRON Comments	
Field quality control samples	Analysis of intra laboratory duplicates for soil was completed at a rate of 7-8%, which is just less than the targeted rate of 10%. Analysis of inter laboratory duplicates was completed at a rate of 2%, which is less than the targeted rate of 5%.	
	Analysis of intra laboratory duplicates for groundwater was completed at a rate of 8%, which is just less than the targeted rate of 10%. Analysis of inter laboratory duplicates was completed at a rate of 4%, which is just less than the targeted rate of 5%	
	The low rate of duplicate analysis is not considered to affect the assessment of precision based on the acceptable relative percent differences (RPDs) between primary and duplicate sample results.	

Field and Lab QA/QC	ENVIRON Comments
	Trip spike and trip blank samples were not collected for anlaysis as volatile contaminants were not the main chemicals of concern.
Field quality control results	RPD results for soil were within acceptable limits, aside from high RPDs for fluoride in two intra laboratory duplicate pairs and high RPDs for PAHs in one intra laboratory duplicate pair. The primary and duplicate concentrations in these three samples were well below the selected criteria and the high RPDs are not considered to affect the outcome of the investigation. Duplicate soil results are included in Table LR12.
	RPD results for groundwater were within acceptable limits, with the exception of aluminium, chromium, nickel, lead and zinc in duplicate pair MW102/ DUP A. The duplicate results appear to be anomalous and this sample may not have been filtered at the laboratory, as requested. Duplicate groundwater results are included in Table LR13.
NATA registered laboratory and NATA endorsed methods	Envirolab was used as the primary laboratory and ALS was used as the secondary laboratory. Envirolab and ALS laboratory certificates are NATA stamped and both laboratories are accredited for the analyses performed for this assessment.
Analytical methods	A summary of analytical methods were included in the laboratory test certificates.
Holding times	Review of the COCs and laboratory certificates indicate that holding times were met.
Practical Quantitation Limits (PQLs)	PQLs for soil and groundwater analytes were below the assessment criteria.
Laboratory quality control samples	Laboratory quality control samples including duplicates, laboratory control samples, matrix spikes, surrogate spikes and blanks were undertaken by the laboratories at appropriate frequencies.
Laboratory quality control results	All results for laboratory soil duplicates, laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.

Overall it is considered that the completed investigation works and the data obtained adequately complied with the requirements of NSW DEC (2006) and NSW EPA (2007) guidelines. Assessment of the Data Quality Indicators of completeness, comparability, representativeness, precision and accuracy, which are outlined in Section 6 of the SAQP (ENVIRON, 2012), is made in Table C.

Table C: QA/QC – Assessment of DQIs		
DQI	ENVIRON Comments	
Completeness	Completeness is a measure of whether all the data necessary to meet the project objectives was collected.	
	As noted in Table A above, sampling locations were generally	

Table C: QA/QC – Assessment of DQIs	
DQI	ENVIRON Comments
	completed as per the SAQP. In two areas, sampling locations were restricted by buildings and services. However this did not impact on data collection. Soil and groundwater samples were analysed for chemicals of concern based on historical use of each area of the Smelter Site in conjunction with observations made during the fieldwork. ENVIRON considers the investigation to be complete.
Comparability	Comparability is a measure of confidence that the data may be considered to be equivalent for each sampling and analysis event.
	The field investigations were completed by experienced personnel from ENVIRON using standard operating procedures Part of the fieldwork, including groundwater well installation, was completed by Kirsty Greenfield who also completed the 2012 Phase 2 field investigations.
	The laboratory analysis was undertaken by NATA registered laboratories using accredited analytical methods. It is noted that the primary laboratory for this investigation (Envirolab Services) was the secondary laboratory for the 2012 Phase 2. The primary and secondary laboratories were switched as Envirolab Services provided better analytical services for assessment of fluoride in soil and groundwater.
	ENVIRON considers the soil and groundwater data collected during this Phase 2 investigation to be comparable to the 2012 Phase 2 investigation.
Representativeness	Representativeness is the confidence that the data is representative of each media present at the site.
	In the field, representativeness is achieved by completing an adequate number of sampling points to characterise each PAEC/ AEC. As outlined in Table A, both targeted and grid-based sampling patterns were used to assess contamination at the PAECs/AECs and the number of sampling points at each PAEC/AEC was considered adequate for characterisation. Both soil and groundwater was sampled.
Precision	Precision is a measure of the reproducibility of the data.
	In the field, ENVIRON achieved precision by using standard operating procedures for the collection of soil and groundwater samples and by collecting duplicate and triplicate samples for analysis. As outlined in Table B, RPD results for duplicate samples were acceptable.
	At the laboratory, precision is assessed using blind replicate samples and split samples. As outlined in Table B, all results fo laboratory soil duplicates were acceptable and no detections were made in blank samples.
Accuracy	Accuracy is a measure of the closeness of a measurement to the true parameter value.
	In the field, ENVIRON achieved accuracy by using standard operating procedures for the collection of soil and groundwater samples.

Table C: QA/QC – Assessment of DQIs	
DQI	ENVIRON Comments
	At the laboratory, precision is assessed using blind replicate samples and split samples. As outlined in Table B, all results for laboratory control samples, matrix spikes and surrogates were acceptable and no detections were made in blank samples.

In general, the Data Quality Indicators of completeness, comparability, representativeness, precision and accuracy have been met. It is considered that the data is of suitable quality to meet the project objectives.

Appendix E

NEPM (2013) EIL Calculation Spreadsheets

Inputs	
Select contaminant from list below	ì
Cr_III	
Below needed to calculate fresh ar aged ACLs	hd
Enter % clay (values from 0 to 100%)
1	
1 Below needed to calculate fresh ar aged ABCs	nd
1 Below needed to calculate fresh ar	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentration (mg/kg). Leave blank if no measure	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentrati (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentratio (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentrati (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentratio (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentratio (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentratio (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only	on
1 Below needed to calculate fresh ar aged ABCs Measured background concentratio (mg/kg). Leave blank if no measure value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)	on

Outputs			
Land use	Cr III soil-specific ElLs		
	(mg contaminar	nt/kg dry soil)	
v	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	70	
Urban residential and open public spaces	#NUM!	190	
Commercial and industrial	#NUM!	320	

Inputs	
Select contaminant from list below	
Cu	Land use
Below needed to calculate fresh and aged ACLs	
Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)	
7.26	National par high conser
Enter soil pH (calcium chloride method) (values from 1 to 14)	Urban resid public space
5.5	
Enter organic carbon content (%OC) (values from 0 to 50%)	Commercia
1.3	de la companya de la
Below needed to calculate fresh and aged ABCs	
Below needed to calculate fresh and aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only	
aged ABCs Measured background concentration (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)	

Outputs			
Land use	Cu soil-specific EILs		
	(mg contaminant/kg dr		
	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	60	
Urban residential and open public spaces	#NUM!	150	
Commercial and industrial	#NUM!	210	

Inputs	
Select contaminant from list below	
Ni	
Below needed to calculate fresh and aged ACLs	d
Enter cation exchange capacity	
(silver thiourea method) (values fro	m
0 to 100 cmolc/kg dwt)	
7.26	
1.20	_
	-
Below needed to calculate fresh and	d
aged ABCs	
aged ABCs Measured background concentratio	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured	n
aged ABCs	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only	n
aged ABCs Measured background concentratio (mg/kg). Leave blank if no measured value or for fresh ABCs only Enter iron content (aqua regia method) (values from 0 to 50%) to obtain estimate of background or for aged ABCs only Enter State (or closest State)	n

Outputs			
Land use	Ni soil-specific EILs		
	(mg contaminant/kg		
	Fresh	Aged	
National parks and areas of high conservation value	#NUM!	20	
Urban residential and open public spaces	#NUM!	85	
Commercial and industrial	#NUM!	140	

Outputs								
Land use	Zn soil-specific EILs							
	(mg contaminar	it/kg dry soil						
	Fresh	Aged						
National parks and areas of high conservation value	#NUM!	130						
Urban residential and open public spaces	#NUM!	310						
Commercial and industrial	#NUM!	440						

Appendix F

Borehole, Test Pit and Hand Auger Logs

		F	N	VI	RC	DN	E	BOREHOLE	NUMBER HA101 PAGE 1 OF 1		
СГ	IENT	Г_Ну	dro A	lumini	um Ku	ırri Kurri		PROJECT NAME Phase 2 ESA PROJECT LOCATION			
DA	TE S	STAR	TED _	26/6/	14	COMPLETED <u>26/6/14</u>	R.L. SURFACE	DA	TUM		
нс							HOLE LOCATION _AEC12 LOGGED BY _KW CHECKED BY				
Method	Water Water Material Description Symbol Symbol Material Mater C C C S S Mater C Log Material				Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, dark brown, no odour		HA101 - 0.0m			
			-					HA101 - 0.1m HA101 - 0.15m			
			-			FILL; Sandy CLAY, no odour		HA101 - 0.2m			
			-			FILL; Silty SAND, dark brown, no odour					
				****		Borehole HA101 terminated at 0.4m		-			
			0 <u>,5</u>	-							
			-	-							
			-								
			-	-							
			_								
T 30/1/15			1 <u>,0</u>								
RALIA.GD											
ID AUSTF											
GINT S1			-								
5_28.GPJ			-								
2_8_26_2			-	-							
SA AEC 12			1 <u>,5</u>								
IASE 2 ES			-	-							
30383 PH			-	-							
PIT AS1			_								
-E / TEST			_								
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28.GFJ_GINT STD AUSTRALIA.GDT_30/1/15			2,0								

							В	OREHOLI	E NUMBER HA102		
		E	N	VI	RC	N			PAGE 1 OF 1		
						rri Kurri	PROJECT NAME Phase 2 ESA				
PR	OJE		JMBE	R _ A	S1303	83	_ PROJECT LOCATION				
						COMPLETED <u>26/6/14</u>					
	DRILLING CONTRACTOR										
NC	DTES	;		<u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations		
						FILL; Sandy SILT, dark brown, slight H_s^2 odour	, moist				
			-					HA102 - 0.1m			
								HA102 - 0.15m			
								HA102 - 0.2m			
			-								
			_								
			0,5			Borehole HA102 terminated at 0.5m		-			
			_								
			-								
			_	-							
1/15			-								
DT 30/			1 <u>,0</u>								
ALIA.G											
AUSTR			-								
T STD /			-								
O GIN											
5_28.GF			-								
3_26_2			-								
EC 12_8			1 <u>,5</u>								
ESA AI											
IASE 2			-								
383 PH											
AS130											
ST PIT			-								
-E / TE:			_								
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28 GPJ_GINT STD AUSTRALIA GDT_30/1/15											
B			2,0								

							В	OREHOLE	E NUMBER HA103 PAGE 1 OF 1	
		E	N	VI	RC	N				
						ırri Kurri 183	PROJECT NAME _ Phase 2 ESA PROJECT LOCATION			
DA	TE S	STAR	red _	26/6/ ⁻	14	COMPLETED _ 26/6/14	R.L. SURFACE	D.	ATUM	
HOLE SIZE LOG										
NC	DTES	: 			C					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, dark brown with (small) grave	l, no odour			
			-					HA103 - 0.1m		
			-			As Above, light brown with timber, no gravel, no	odour	HA103 - 0.15m		
								HA103 - 0.2m		
			_							
			-			Grey, no gravel				
			0,5	***		Borehole HA103 terminated at 0.5m				
			-	-						
			-	-						
30/1/15										
A.GDT			1 <u>,0</u>	-						
STRALI			-	-						
STD AU										
GINT 9										
28.GPJ			-							
26_25			-	-						
EC 12_8			1 <u>,5</u>							
ESA AE										
HASE 2			-	-						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-	-						
PIT AS1										
TESTF										
EHOLE /			-							
BORE			2,0							

		F	N	VI	RC	DN		BOREHOLE	PAGE 1 OF 1			
C∟	IEN	Г_ Ну	/dro A	lumini	um Ku	rri Kurri		nase 2 ESA				
DA DR	TE S	STAR [.] NG C	ted Ontr	26/6/′ ACTO	14 R	COMPLETED <u>26/6/14</u>	R.L. SURFACE SLOPE _90°	DA BE	.tum			
нс	DLES											
Method	Water		Depth	ohic Log	Classification Symbol	Material Desci	iption	Samples Tests Remarks	Additional Observations			
						FILL; Silty SAND, brown with gravel (small)						
			-			FILL; Sandy CLAY, brown/orange, soft, mois	t with gravel (small)	HA104 - 0.1M HA104 - 0.15M HA104 - 0.2M				
			-			FILL; Silty SAND, grey						
			0,5			Borehole HA104 terminated at 0.5m		-				
			-									
			-									
			1,0									
			-									
			-									
			- 1 <u>,5</u>									
די 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			-									
			-									
BOREHOLE			2,0									

		F	N	VI	RC	DN		BOREHOLE	NUMBER HA105		
СГ	IEN	т <u>Н</u> у	dro A	lumini	um Ku	rri Kurri		Phase 2 ESA			
DA	ATE S	STAR	TED _	26/6/ [,]	14	COMPLETED <u>26/6/47</u>	R.L. SURFACE	DA	TUM		
но	EQUIPMENT _ Hand Auger HOLE LOCATION _ AEC12 HOLE SIZE LOGGED BY _ KW NOTES LOGGED BY _ KW										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desci	iption	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, brown, with gravel (small),	no odour				
			-			FILL; Sandy CLAY, brown/orange with grave	(small), no odour	HA105 - 0.1M HA105 - 0.15M HA105 - 0.2M			
			-			FILL; Silty SAND, dark brown, no odour					
			0,5			Borehole HA105 terminated at 0.5m		_			
			-								
			-								
2			_ 1 <u>,0</u>								
			-	-							
			-								
			_ 1 <u>,5</u>								
			-								
			-								
טטרבווטרד, ורטו דוו אטוטטטט דוואטר ג בטא ארט ו <u>ג"ט"מ"</u> בטיסרט טווו טוע אטטווארגואטרע שעוויט			2,0								

							B	OREHOLI	E NUMBER HA106 PAGE 1 OF 1		
		E	Ν	VI	RC	N			PAGE I OF I		
						rri Kurri 83	PROJECT NAME _ Phase 2 ESA PROJECT LOCATION				
						COMPLETED _26/6/14					
DR	DRILLING CONTRACTOR				R		SLOPE <u>90°</u>	В	EARING		
NC	DTES	5									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, with gravel (small), dark brow	n, no odour				
			-					HA106 - 0.1M			
			_					HA106 - 0.15M			
						Refusal Borehole HA106 terminated at 0.25m		HA106 - 0.2M			
			-	-		Borenole HA 100 terminated at 0.25m					
			-	-							
			0 <u>,5</u>	-							
			-								
			-	-							
			_								
1/15			-	-							
DT 30/			1 <u>,0</u>	-							
3ALIA.G											
AUST			_								
NT STI			-	-							
GPJ G			_	-							
2528.											
12_8_26			-								
A AEC 1			1 <u>,5</u>	-							
SE 2 ES			_								
83 PHA(
AS1303			-								
ST PIT /			-								
-E / TES			_								
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15											
mí			2,0			l			1		

								В	OREHOLE	E NUMBER HA107		
	Ĺ		Ε	N	VI	RC	N			PAGE 1 OF 1		
							ırri Kurri		VAME _ Phase 2 ESA			
									PROJECT LOCATION			
	DATE STARTED _26/6/14 COMPLETED _26/6/14 DRILLING CONTRACTOR											
								LOGGED BY KW	c	HECKED BY		
NOTES												
Method		Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations		
							FILL; Silty SAND, dark brown, with gravel (very	small), no odour				
				-					HA107 - 0.1M			
				_					HA107 - 0.15M			
									HA107 - 0.2M			
				-								
				_					-			
							FILL; Silty SAND, very light brown, no odour, m	oist, no gravel				
				0,5			Borehole HA107 terminated at 0.5m		-			
				-	-							
				-	-							
				-	-							
/1/15				-								
3DT 30				1 <u>,0</u>	-							
RALIA.C												
AUSTF				-								
NT STD				-	-							
PJ GI				_								
25_28.G												
8_26_3				-	-							
EC 12				1 <u>,5</u>	_							
ESA A												
HASE 2				-	-							
0383 PI				-								
F AS13												
EST PI1				-								
DLE / TE				-								
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15				2,0								

								B	OREHOLE	E NUMBER HA108		
	Í		E	N	VI	RC	N			PAGE 1 OF 1		
							rri Kurri	PROJECT NAME Phase	PROJECT NAME Phase 2 ESA			
F	PRO	OJE	CT NI	UMBE	R _ A	S1303	83	PROJECT LOCATION				
							COMPLETED _26/6/14					
	DRILLING CONTRACTOR											
	HOLE SIZE											
ľ	101	TES		1								
	Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations		
Γ							FILL; Silty SAND, dark brown with grass roots, I	no odour	HA108 - 0.1M			
				-								
				_								
							Lighter Brown					
				-			Grey, with cobbles		HA108 - 0.3M			
				-			Brown					
				0,5								
							Borehole HA108 terminated at 0.5m					
				-	-							
				_								
				-								
5				-	-							
30/1/1				1,0								
.IA.GDT												
JSTRAL				-								
STD AL				_	_							
J GINT												
28.GP.				-								
_26_25				-								
C 12_8				1,5								
ESA AE												
IASE 2				-								
0383 PF				_								
- AS13(
EST PIT				-								
DLE / TE				-								
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15				2,0								

		F	N	\/I	R <i>(</i>	DN	В	OREHOL	E NUMBER HA109 PAGE 1 OF 1		
CL	IEN	Т _Ну	dro A		um Ku	rri Kurri		Phase 2 ESA			
DA	TE S	STAR	TED _	27/6/ ⁻	14	COMPLETED _27/6/14	R.L. SURFACE		DATUM		
нс	EQUIPMENT Hand Auger HOLE LOCATI HOLE SIZE LOGGED BY NOTES LOGGED BY										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	otion	Samples Tests Remarks	Additional Observations		
			_			FILL; Silty SAND, dark brown, no odour		HA109 - 0.0-0.1M	_		
			-								
			-			FILL; Sandy CLAY, brown/grey with cobbles FILL; Silty SAND, grey		HA109 - 0.3-0.4M	_		
			0,5			Borehole HA109 terminated at 0.5m					
			-	-							
			_	_							
30/1/15			_ 1 <u>,0</u>	-							
ISTRALIA.GDT				-							
I GINT STD AU			-	-							
_26_25_28.GPJ			-	-							
ESA AEC 12_8			1 <u>,5</u>	-							
0383 PHASE 2			-	-							
EST PIT AS13			-	_							
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			2,0								

			'N I	\ <i>1</i> 1			В	OREHOLE	PAGE 1 OF 1		
						DN rri Kurri	PRO IECT NAME Phas	2 FSA			
								Phase 2 ESA			
						COMPLETED _27/6/14					
		SIZE					LOGGED BY _KW	CI	HECKED BY		
		, <u> </u>									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, black with grass roots, no o	dour	HA110 - 0.0-0.1M			
			-								
			-								
								HA110 - 0.3-0.4M			
			-			FILL; Silty SAND, light brown with cobbles, no	odour				
			0,5								
						Borehole HA110 terminated at 0.5m					
			-								
			_								
			-								
			_	-							
30/1/15			1.0								
A.GDT			1 <u>,0</u>								
TRALI			-	-							
ID AUS											
SINT S			-								
3.GPJ 0			-								
5_25_2											
12_8_2			_								
AAEC			1 <u>,5</u>								
E 2 ES/											
3 PHAS											
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-								
PIT AS			_								
TEST											
HOLE /			-								
BORE			2,0								

				\/I	DC	DN	B	OREHOLI	E NUMBER HA111 PAGE 1 OF 1		
CL	IEN1	Г _Ну	/dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA			
DA	TE S	STAR	TED _	27/6/	14	COMPLETED _ 27/6/14	R.L. SURFACE	D	ATUM		
EC HC	EQUIPMENT Hand Auger						SLOPE 90° BEARING HOLE LOCATION AEC8				
	Method Water Braphic Log Symbol Symbol Symbol						on	Samples Tests Remarks	Additional Observations		
		(,	()			FILL; Silty SAND, black, grass roots, no odour		HA111 - 0.0-0.1M			
			-								
			-			FILL; Silty SAND, brown with cobbles, no odour		HA111 - 0.3-0.4M			
			0,5								
			_			Borehole HA111 terminated at 0.5m					
			-	-							
			-	-							
DT 30/1/15			- 1 <u>,0</u>	-							
USTRALIA.GI			-	-							
GINT STD A			-	-							
.6_25_28.GPJ			-								
A AEC 12_8_2			1 <u>,5</u>	-							
PHASE 2 ES/			-	-							
IT AS130383			-								
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-								
BOREH			2,0								

							B	OREHOL	E NUMBER HA112 PAGE 1 OF 1		
		E	N	VI	RC	N					
						rri Kurri 83					
DA	TE S	STAR	TED _	27/6/	14	COMPLETED 27/6/14	_ R.L. SURFACE	[DATUM		
но	DLES	SIZE									
NC	DTES	\$ 									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations		
						FILL; Silty SAND, black/brown, grass roots, wit	h cobbles, no odour	HA112 - 0.0-0.1M			
			-						-		
			-								
			-			As Above, light brown			_		
			_					HA1120 - 0.3-0.4M	_		
			0,5								
			0,5			Borehole HA112 terminated at 0.5m					
			-	-							
			-	-							
			_								
0/1/15			-								
.GDT 30			1 <u>,0</u>	-							
STRALIA			-	-							
STD AU			_								
J GINT											
5_28.GP			-								
8_26_2			-								
AEC 12			1 <u>,5</u>	-							
E 2 ESA			_								
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15											
AS1303			-								
IST PIT			-								
OLE / TE			-								
BOREH			2,0								

				\/I	DC	DN	I	BOREHOL	E NUMBER HA113 PAGE 1 OF 1	
	IEN	Г _Ну	/dro A	lumini	ium Ku	JIN Irri Kurri 183				
DA	ATE S	STAR	TED _	27/6/	14	COMPLETED _27/6/14	R.L. SURFACE		DATUM	
EC HC	QUIPI	MENT SIZE	- <u>Ha</u>	nd Au	ger		HOLE LOCATION AEC	EC26 CHECKED BY		
Method	Water		Depth	bhic Log	Classification Symbol	Material De	escription	Samples Tests Remarks	Additional Observations	
		(,				FILL; Silty SAND, brown with cobbles (sma	all) and grass roots, no odour	HA113 - 0.0-0.1M	_	
			-			FILL; Sandy CLAY, brown/dark brown with	n gravel, no odour			
			0,5					HA113 - 0.3-0.4M	_	
			_			Borehole HA113 terminated at 0.5m				
			-							
			- 1 <u>,0</u>							
			-							
			_							
			_ 1 <u>,5</u>							
			-							
הטורבווטרד / ודטו דוו אטוטטטט ווואטר ג בטא ארט ו <u>ג"ט"בט"בט</u> "בטיסיט טווו טוט אטטווארוואטרו טטו א			-							
			2,0							

				\ <i>1</i> 1			BC	DREHOL	E NUMBER HA114 PAGE 1 OF 1
								2 5 5 4	
						ırri Kurri 83			
DA DR EQ	ATE S RILLI QUIPI	STAR NG CO MENT	TED ONTR Ha	27/6/ ACTO	14 R ger	COMPLETED <u>27/6/14</u>	_ R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC26	I	DATUM BEARING
		SIZE _					_ LOGGED BY _KW	(CHECKED BY
Method	Water		Depth	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations
						FILL; Sandy CLAY with crushed brick, orange,	no odour	HA114 - 0.0-0.1M	
			-				-		
			-			FILL; Silty SAND, brown with cobbles/gravel, n	o odour	HA114 - 0.3-0.4M	-
			0,5						
						FILL; Sandy CLAY, brown with gravel, no odou Borehole HA114 terminated at 0.5m	<u>ır </u>		
			-	-					
			-	_					
			-	-					
0/1/15			-	-					
A.GDT 30			1 <u>,0</u>	-					
AUSTRAL			-	-					
SINT STD			-	-					
28.GPJ (-	-					
8_26_25			-	-					
SA AEC 12			1 <u>,5</u>	-					
HASE 2 E			-	-					
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_26_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-	-					
ST PIT A			-	-					
HOLE / TE			-						
BORE			2,0						

				\/I	R(DN	E	BOREHO	LE NUMBER HA115 PAGE 1 OF 1	
		Г_ Ну	/dro A	lumini	um Ku	// 1 1 Irri Kurri 183				
D# DF	ATE S RILLI	STAR NG C	ted _ Ontr	27/6/ ACTC	14 R	COMPLETED <u>27/6/14</u>	R.L. SURFACE SLOPE _90°		DATUM BEARING	
н	OLE S	SIZE						26 CHECKED BY		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND, brown with black ash and g	ravel (small), no odour	HA115 - 0.0-0.1M		
			-			FILL; Sandy CLAY, brown with black ash and	gravel, no odour		_	
			-					HA115 - 0.2-0.3M	_	
				***		Borehole HA115 terminated at 0.4m		_		
			0, <u>5</u>							
			_							
			-							
30/1/15			-							
FRALIA.GDT			1,0							
NT STD AUS			-							
5_28.GPJ GII			-							
C 12_8_26_2										
SE 2 ESA AE			-							
5130383 PHA			-							
TEST PIT AS			-							
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_28_28.GPJ GINT STD AUSTRALIA GDT 30/1/15			2,0							

		E	E NUMBER HA116 PAGE 1 OF 1								
CL	IENT	г <u>Н</u> у	dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA			
DA	TE S	STAR		27/6/ [.]	14	COMPLETED <u>27/6/14</u>	_ R.L. SURFACE	D.	ATUM		
EC HC	QUIPI DLE S	Ment Size	Ha	nd Aug	ger		HOLE LOCATION AEC26	i			
Method	Water	8 RL (m)	Depth (m)	ohic Log	Classification Symbol	Material Descrip	vtion	Samples Tests Remarks	Additional Observations		
			_			FILL; Silty SAND, brown, with gravel, no odour		HA116 - 0.0-0.1M			
			_			FILL; Silty SAND, brown with gravel (compacte	- d roadbase), small to medium, no	HA116 - 0.2-0.25M			
						odour Borehole HA116 terminated at 0.4m	-	HA116 - 0.3-0.4M			
			0 <u>,5</u>								
			-								
			_								
30/1/15			-								
STRALIA.GDT			1 <u>,0</u> _								
GINT STD AU			-								
26_25_28.GPJ			_								
SA AEC 12_8_			1 <u>,5</u>								
883 PHASE 2 E			_								
SI PIL AS130			_								
BOREHOLE / IEST P/I AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/115			2,0								

		F	'N	VI	RC	DN	B	OREHOLI	E NUMBER HA117 PAGE 1 OF 1
CL	IENT	Г_Ну	dro Al	umini	um Ku	rri Kurri 83			
DA	TE S	STAR	red _	27/6/	14	COMPLETED <u>27/6/14</u>	R.L. SURFACE	D	DATUM
EC HC	UIPI	MENT SIZE	Har	nd Au	ger		HOLE LOCATION AEC20		
Method	Water	RL	Depth (m)	bhic Log	Classification Symbol	Material Desc	pription	Samples Tests Remarks	Additional Observations
-	1	(m)	(11)	0	0.0	Silty SAND, brown, no odour		HA117 - 0.0-0.1m	_
						Sandy CLAY, brown with gravel (small to me	edium), no odour, very compacted	HA117 - 0.25-0.3m HA117 -	
						Borehole HA117 terminated at 0.4m		0.3-0.35m HA117 - 0.35-0.4m	
			0 <u>,5</u>						
			_						
			_						
D			_						
A.GDT 30/1/1			1 <u>,0</u>						
) AUSTRALI			_						
J GINT STD			_						
26_25_28.GF			_						
AEC 12_8_			1 <u>,5</u>						
HASE 2 ES/			_						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28_28.GFJ_GINT STD AUSTRALIA.GDT_30/1/15			_						
E / TEST PIT			_						
BOREHOL			2,0						

							B	OREHOLI	E NUMBER HA119 PAGE 1 OF 1	
		E	Ν	VI	RC	DN				
						rri Kurri 83				
DA	TE S	STAR	red _	27/6/ [.]	14	COMPLETED _ 27/6/14	R.L. SURFACE	C	DATUM	
							SLOPE 90° BEARING HOLE LOCATION AEC26			
нс	HOLE SIZE									
NC	DTES	\$			_					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations	
			_			Silty SAND, brown, gravel (small), no odour	-	HA119 - 0.0-0.1m	_	
						Sandy CLAY, brown with gravel, no odour				
			_				-	HA119 - 0.3-0.4m		
			0,5			Borehole HA119 terminated at 0.42m				
			0, <u>5</u>							
			-							
			-							
			_							
15			_							
DT 30/1/			1 <u>,0</u>							
FRALIA.G			_							
STD AUS										
J GINT (
25_28.GF										
12_8_26			-							
ESA AEC			1 <u>,5</u>							
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-							
130383 P			_							
T PIT AS			_							
DLE / TES			_							
BOREHC			2,0							

		F	N	VI	RC	DN	В	OREHOLE	PAGE 1 OF 1
CL	IENT	Г _Ну	dro A	lumini	um Ku	Irri Kurri 183			
DA	TE S	STAR	red _	27/6/	14	COMPLETED <u>27/6/14</u>	R.L. SURFACE	D/	ATUM
нс	DLE S								
Method	Water		Depth	bhic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						Silty SAND, brown, with gravel, no odour		HA120 - 0.0-0.1m	
			_			Sandstone			
			_			Sandy CLAY, brown with gravel (small to me	:dium), no odour	HA120 - 0.3-0.4m	
			0 <u>,5</u>			Borehole HA120 terminated at 0.4m			
			_						
			_						
/15			_						
VLIA.GDT 30/1			1 <u>,0</u>						
STD AUSTRA			_						
28.GPJ GINT			_						
C 12_8_26_25			_ 1 <u>,5</u>						
ASE 2 ESA AE									
AS130383 PH,			_						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			_						
BOREHOLI			2,0						

		E	N	VI	RC	DN	E	BOREHOLE NUMBER HA121 PAGE 1 OF 1			
C∟	IENT	Г_ Ну	dro A	lumini	um Ku	rri Kurri		ase 2 ESA			
DA DR	TE S	STAR	TED _ ONTR	27/6/ ACTO	14 R	COMPLETED <u>27/6/14</u>	R.L. SURFACE SLOPE _90°	D/	ATUM		
нс											
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	sription	Samples Tests Remarks	Additional Observations		
			_			Silty SAND, brown, no odour		HA121 - 0.0-0.1m			
			_			Sandy CLAY, brown, with concrete pieces a compacted, no odour	nd gravel (small to medium),	_			
						Terminated in compacted ground Borehole HA121 terminated at 0.3m		HA121 - 0.3-0.4m			
			0 <u>,5</u>								
			_								
			_								
0			_								
A.GUI 300 1			1 <u>,0</u>								
			_								
			_								
07 07 07 07 07			_								
Z ESA AEU I			1 <u>,5</u>								
30383 PHASE			-								
			_								
BUREHULE / IESI MI ASI30383 MASE ZESA AEC 12_8_20_23_28.0M UNI SID AUSIMALIA GDI 30/1/13			2,0								

			'N I	\ /I	חר		BC	OREHOL	E NUMBER HA122 PAGE 1 OF 1
						DN rri Kurri		2 5 5 4	
						83			
						COMPLETED _ 27/6/14			
NC	DTES	6							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	on	Samples Tests Remarks	Additional Observations
						Sandy CLAY, red with cobbles, gravel and crush	ed brick pieces, no odour	HA122 - 0.0-0.1m	
			-				-		_
			_						
			-			Sandy CLAY, with asphalt and gravel, no odour		HA122 - 0.3-0.4m	_
			-				-	0.0 0.411	-
			0,5			Borehole HA122 terminated at 0.5m			
						Borenole HA122 terminated at 0.5m			
			-						
			-	-					
			_						
1/15			-						
DT 30/			1 <u>,0</u>	-					
RALIA.G									
AUSTF									
NT STD			-	-					
GPJ GI			_						
25_28.									
2_8_26			-						
A AEC 1.			1 <u>,5</u>						
E 2 ES/			_						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15									
S13038.			-						
- PIT A			_						
E / TEST									
KEHOLE			-						
BOF			2,0						

DRILLING CONTRACTOR					COMPLETED <u>27/6/14</u>	R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC	I I C12	DATUM	
Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations	
		-			Silty SAND, brown, no odour, Sandy CLAY, brown with gravel, no odour (50 Small-medium gravel Borehole HA123 terminated at 0.5m	0% clay, 50% sand)	HA123 - 0.0-0.1m HA123 - 0.1-0.2m		
	UIP	IENT _H	IENT Hydro A OJECT NUMBE TE STARTED ILLING CONTR UIPMENT Ha LE SIZE TES TES RL Depth ILLING 0,5 ILLING 1,0 ILLING 1,0 ILLING 1,0	IENT Hydro Alumini OJECT NUMBER A TE STARTED 27/6/ ILLING CONTRACTO UIPMENT Hand Au LE SIZE	IENT Hydro Aluminium Ku OJECT NUMBER AS1303 TE STARTED 27/6/14 ILLING CONTRACTOR	OJECT NUMBER _AS130383 TE STARTED _27/6/14 COMPLETED _27/6/14 ILLING CONTRACTOR	ENT_Hydro Aluminium Kurri Kurri PROJECT NAME _Ph OJECT NUMBER _AS130383 PROJECT LOCATION TE STARTED _27/6/14 COMPLETED _27/6/14 RL. SURFACE SLOPE _90° ILLING CONTRACTOR LOGGED BY _KW TE STARTED _27/6/14 COMPLETED _27/6/14 RL. SURFACE ILLING CONTRACTOR LOGGED BY _KW LOGGED BY _KW TE STARTED _27/6/14 Sandy CLAY, brown with gravel, no odour (50% clay, 50% sand) Sandy CLAY, brown with gravel, no odour (50% clay, 50% sand) 1 Sandy CLAY, brown with gravel, no odour (50% clay, 50% sand)	Image: Several state in the image: Severa state in the image: Several state in the	

							B	OREHOLI	E NUMBER HA124 PAGE 1 OF 1
						N			
						rri Kurri 83			
DA	TE S	STAR		27/6/	14	COMPLETED 27/6/14	R.L. SURFACE	D	DATUM
							HOLE LOCATION _AEC12 LOGGED BY _KW CHECKED BY		
NC	DTES	s 							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations
						Silty SAND, brown/grey, no odour		HA124 - 0.0-0.1m	
			_					HA124 - 0.1-0.2m	
			_			Sandy CLAY, brown, with gravel, no odour	F	HA124 - 0.2-0.3m	-
			_						
			0,5			Borehole HA124 terminated at 0.5m			
			_	-					
			_	-					
			_	-					
15			_	-					
3DT 30/1/			1 <u>,0</u>						
JSTRALIA.0			_	-					
NT STD AL			_	-					
28.GPJ GII			_	-					
8_26_25_			_						
AEC 12			1 <u>,5</u>	-					
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15			_						
S130383 F			_						
EST PIT A			_						
EHOLE / TI			_						
BOR			2,0						

		F		\/I	RC	DN	В	OREHO	LE NUMBER HA125 PAGE 1 OF 1
СГ	IEN	т <u>Н</u> у	dro Alu	umini	um Ku	rri Kurri 83			
DA	TE S	STAR	TED _2	27/6/	14	COMPLETED _27/6/14	_ R.L. SURFACE		DATUM
н	DLE S								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations
						Silty SAND, brown/grey, no odour		HA125 - 0.0-0.1m	
								HA125 - 0.1-0.2m	
						Increased gravel/cobbles, very compacted		HA125 - 0.2-0.3m	_
			0,5			Borehole HA125 terminated at 0.5m		-	
			_						
			_						
			_						
30/1/15			-						
ALLA. GUI			1 <u>,0</u>						
			_						
.87 cz 07 g			_						
A AEC 12_8			1 <u>,5</u>						
HASE Z ES			_						
45130383 F									
BOREHOLE / IEST P/I AST30383 PHASE 2 ESA AEC 12_8_26_25_28:0PJ GINT STD AUSTRALIA (GDT 30/1/15			2,0						

CLIEN	Е IT <u>Ну</u>	ro Alur	ninium	n Kurri	i Kurri		PAGE 1 OF PROJECT NAME Phase 2 ESA PROJECT LOCATION			
									DATUM	
									BEARING	
HOLE NOTE							LOGGED BY KG		CHECKED BY	
	3 <u> </u>									
Method Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol		ial Description	Samples Tests Remarks	Additional Observations	
				$\overline{\Delta}$		BITUMEN FILL; Clayey SAND, brown, med	dium grained			

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15

								BO	REHOLE	NUMBER MW102 PAGE 1 OF 1
		E	N۷	/ -	RO	N				
		T <u>Hydro</u> CT NUN						PROJECT NAME		
DA	TE S	STARTE	D _30)/6/14	ļ		COMPLETED _30/6/14	R.L. SURFACE	C	DATUM
								SLOPE _90° HOLE LOCATION _AEC3_		BEARING
										HECKED BY
NC	DTES									
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material I	Description	Samples Tests Remarks	Additional Observations
							BITUMEN			
				_			FILL; Clayey SAND, brown, mediur			
				_			FILL, Clayey SAND, brown, mediur	n graineo		
				-						
				1						
				-			ALLUVIAL; SAND, yellow, fine grai	ned		
				-			ALLUVIAL; Clayey SAND, yellow			
				-						
				2						
				-						
				-			Wet, no odour			
				_						
				3						
				-						
				-						
				-						
				_4			Borehole MW102 terminated at 4m			
				-						
				-	-					
				-						
				5						
				_						
				_	-					
				_						
				6						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28 GPJ GINT STD AUSTRALIA GDT 30/1/5

								BC	DREHOLE	NUMBER MW103 PAGE 1 OF 1
		E١	7/	/IF	RO	N				FAGE I UF I
		CT NUN								
							COMPLETED <u>30/6/14</u>			
	TES									
Method	Water	Well Details	RL	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
_	-		(,	()			FILL; Gravelly SAND, coarse grained, o AOS Anodes crushed	range then black, some white	MW103 0.0-0.1	
									MW103 0.3-0.4	
				-						
				- 			ALLUVIAL; SAND, fine grained, grey the	en orange, moist		
				-						
				-						
				-						
				2			with some clay			
				-			ALLUVIAL; sandy CLAY, high plasticity,	brown, moist		
			- - -	-						
				-						
			- - - -	3						
			•	-						
				-						
			•	-						
				4			ALLUVIAL; Clayey SAND, coarse grain moist	ed, brown, clay high plasticity,		
			• • •	-						
				-						
				5						
			-							
				-						
				-						
				-			Grading to clay			
			1	6	11.1.1	1	Borehole MW103 terminated at 6m			

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

		E	7/	/16	RO	N			В	OREHOLE	NUMBER MW104 PAGE 1 OF 1	
		IT <u>Hydr</u> ECT NUN							PROJECT NAME Pha			
DF EC HC	RILL QUIF DLE	ING CON PMENT _	ITRAC	TOR	Terr	atest			_ Slope _90° _ Hole location _Aec	DATUM BEARING 2 CHECKED BY		
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol		Material De	escription	Samples Tests Remarks	Additional Observations	
							ALLUVIAL; Sanc	AND, brown, coarse d, fine grained, grey/k	grained with some brick (2) chaki	MW104 0.0-0.1		

		E	<u>ا</u> ر	/16	20	N		BC	DREHOL	E NUMBER MW105 PAGE 1 OF 1
CL	IEN	F <u>Hydr</u>	o Alur	niniun	n Kurr	i Kurri				
DA DF EC HC	ATE \$ RILLI QUIPI DLE \$	STARTE NG CON MENT _	D <u>3</u> (0/6/14 CTOR	_Terr	atest	COMPLETED _30/6/14	R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC8	(HTM oil spill)	DATUM BEARING CHECKED BY
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material De	escription	Samples Tests Remarks	Additional Observations
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15							CONCRETE FILL; Gravelly SAND, coarse grained odour ALLUVIAL; SAND, khaki/grey, fine gr Wet Borehole MW105 terminated at 4m		MW105 0.15-0.25 MW105 0.3-0	
BOREHOLE / TI				6						

VIEW United Num Kurt PROJECT NAME Phase 2 ESA PROJECT NAME A313083 PROJECT NAME Data Date strategi									BC	REHOLE	E NUMBER MW106 PAGE 1 OF 1
PROJECT NUMBER AS130383 PROJECT LOCATION DATE STARTED 1/7/14 COMPLETED 1/7/14 R.L. SURFACE DATUM DRILING CONTRACTOR Terratest SLOPE 90° BEARING									PRO IECT NAME Phase	2 5 5 4	
Date started 1/7/14 COMPLETED 1/7/14 R.L. SURFACE Datum PRILING CONTRACTOR Terratest SLOPE 90° BEARING											
HOLE LOCATION AEC8 HOLE SIZE CHECKED BY NOTES CHECKED BY Image: Strate in the strate in	DA	TE S	STARTE	D _1/	/7/14						
LOGGED BY KG CHECKED BY NTES vest Rt oppin B B B B B B Additional Observations Notes R Notes R Notes R Additional Observations Remarks Additional Observations Notes R Notes R Notes	DR	RILLI	NG CON	ITRAC	CTOR	Terr	atest		SLOPE 90°	I	BEARING
NOTES veget Rt Dgriph grip gr											
Image: Normal Part of the second s									LOGGED BY KG		CHECKED BY
Image: Second			Well	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Tests	Additional Observations
Output ALLUVIAL; SAND, fine grained, brown 1 ALLUVIAL; Sandy CLAY, medium plasticity, brown, fine grained sand 2 - 3 - 4 -									rse grained with some refractory		
Output ALLUVIAL; SAND, fine grained, brown 1 ALLUVIAL; Sandy CLAY, medium plasticity, brown, fine grained sand 2 - 3 - 4 -					-				ŀ	MW106 -	_
ALLUVIAL; Sandy CLAY, medium plasticity, brown, fine grained sand					-	\bigotimes		ALLUVIAL SAND fine grained brown			
ALLUVIAL: Clayey SAND, brown, fine grained Wet					-						
ALLUVIAL: Clayey SAND, brown, fine grained Wet					-						
					1			ALLUVIAL; Sandy CLAY, medium plast	icity, brown, fine grained sand		
					-						
					-						
					-						
					-						
					2						
					-						
				•	-						
				•	-						
	GL/L/			•	-						
				•	3			ALLUVIAL; Clayey SAND, brown, fine o	rained		
	ALIA.6			•	-						
	AUS I K				_						
					_			Wet			
	l GIN				_						
	Z8.GF				4						
Borehole MW106 terminated at 5.5m											
Drevent Solution	- α_ 7			•	_						
Borehole MW106 terminated at 5.5m	AAEC										
Borehole MW106 terminated at 5.5m	E Z E 0.										
Borehole MW106 terminated at 5.5m	L L H AS				5						
Borehole MW106 terminated at 5.5m	130380			•							
Borehole MW106 terminated at 5.5m	AS II										
		-						Borehole MW106 terminated at 5.5m			
	OLE /				-						
	BOKET				6						

		E								E NUMBER MW107 PAGE 1 OF 1	
		CT NUM									
D/ DF EC HC	ATE (RILLI QUIPI DLE (STARTE NG CON MENT _	D _1/ ITRAC	7/14 CTOR	_Terr	atest	COMPLETED 1/7/14	R.L. SURFACE SLOPE _90° HOLE LOCATION _AEC	SURFACE DATUM OPE _90° BEARIN OLE LOCATION _AEC8 GGED BY _KG CHECK		
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations	
BOREHOLE / IESI PIT AS130383 PHASE 2 ESA AEC 12_8_26_29_58.GPJ GINT SID AUSTRALIA.GDT 30/1/15							CONCRETE ALLUVIAL FILL; Clayey SAND, fine ALLUVIAL; SAND, fine grained, blac Wet Borehole MW107 terminated at 4m				

								BOREHOLE	E NUMBER SB101 PAGE 1 OF 1
		E	N	VI	RC	N			
						ırri Kurri 83			
DA	TE S	STAR	TED _	30/6/ ⁻	14	COMPLETED <u>30/6/14</u>	R.L. SURFACE	D/	ATUM
						erratest			
		SIZE _					LOGGED BY KG	CI	HECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material	Description	Samples Tests Remarks	Additional Observations
-	-	(11)	()		00	Aluminium Scrap on Surface. TOPSOIL	; Clayey SAND, fine grained, brown	SB101 - 0.0-0.1	
			-						
			-			FILL; Sandy CLAY, brown, high plasticit	y with some gravel		
			-						
			_					SB101 - 0.3-0.4 DUP A	
			0 <u>,5</u>						
			_						
			-						
			-	\times		ALLUVIAL; SAND, grey, fine grained			
C /			-						
			1,0			Borehole SB101 terminated at 1m			
			-	-					
			_	-					
			_						
··07 C7 0									
			1 5						
			1 <u>,5</u>						
			-						
			-						
			-						
CLE			-						
			2,0						

			• •	、 /1			E	BOREHOLE	NUMBER SB103 PAGE 1 OF 1
						DN Irri Kurri	PROJECT NAME Pha	ase 2 ESA	
PR	OJE		UMBE	R _ A	S1303	83	PROJECT LOCATION		
DA	TE S	STAR	TED	30/6/	14	COMPLETED _ 30/6/14	R.L. SURFACE	DA	тим
но	DLE S	SIZE					LOGGED BY KG	СН	ECKED BY
NO	TES	;	1			1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; Sandy GRAVEL, black/grown, medium	grained with some brick	SB103 - 0.0-0.1	
			-						
			-						
			_	\bigotimes					
						ALLUVIAL; SAND, grey, fine grained		SB103 - 0.3-0.4	
			-						
			0 <u>,5</u>			ALLUVIAL; SAND, brown/grey, fine grained		_	
			-						
			-						
			-	111		ALLUVIAL; Clayey SAND, grey, fine grained		_	
						ALLOVIAL, Clayey SAND, grey, line grained			
			1,0	[]]]		Borehole SB103 terminated at 1m		_	
			-						
			-	1					
			_						
1									
			1 <u>,5</u>						
			-						
			-	1					
			-						
			_						
2 2			2,0						

							В	OREHOLE	PAGE 1 OF 1
		ΞN	VI	RC	N				
					ırri Kurri 83				
					COMPLETED <u>30/6/14</u>				
	e size Es						LOGGED BY KG	CH	IECKED BY
Method		Depth	Graphic Log	Classification Symbol	Material	Descriptio	n	Samples Tests Remarks	Additional Observations
					FILL; Gravelly SAND, black/some white crushed waste	e AOS, coa	rse grained, AOS Anode	SB104 - 0.0-0.1	
		- - - - - - - - - - - - - - - - - - -			ALLUVIAL; SAND, fine grained, khaki Borehole SB104 terminated at 1m			SB104 - 0.3-0.4	
			'N I	\ /I			E	BOREHOLE	NUMBER SB105 PAGE 1 OF 1
--	-------	-----------	--------------	--------------------	--------------------------	--	------------------------------	-----------------------------	-----------------------------
						DN ırri Kurri	PROJECT NAME Pha	se 2 ESA	
PR	OJE		UMBE	R _A	<u>S1303</u>	83			
DA	TE S	STAR	TED	30/6/ [.]	14	COMPLETED _ 30/6/14	R.L. SURFACE	DA	
							LOGGED BY KG	CH	IECKED BY
NC	DTES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	scription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly SAND, coarse grained with s	some ASO Anode crushed waste	SB105 - 0.0-0.1	
			-						
			-						
								SB105 - 0.3-0.4	
			-						
			0 <u>,5</u>	\bigotimes		ALLUVIUM; SAND, black then grey, fine gr	ainod		
						ALLOVIOM, SAND, black then grey, line gr	amed		
			-						
			_						
			-						
			_						
			1,0			Borehole SB105 terminated at 1m		-	
			_						
			-						
5			_						
2.04									
			-						
			1 <u>,5</u>						
			-						
			_						
די 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			-						
-			_						
			2,0						

		F	N	VI	RC	DN	B	OREHOLE	NUMBER SB106 PAGE 1 OF 1	
CL	IEN	Г_Ну	dro A	lumini	um Ku	rri Kurri 83				
DA	TE S	STAR	red _	30/6/	14	COMPLETED _30/6/14	R.L. SURFACE	DA	TUM	
EQ HC	OLE S	MENT	Haı	nd Au	ger		HOLE LOCATION AEC2	HOLE LOCATION _AEC26 LOGGED BY _KG CHECKED BY		
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
			_			FILL; Clayey GRAVEL, brown, coarse graine	ed	SB106 - 0.0-0.1		
			_			ALLUVIAL; SAND, khaki, fine grained		SB106 - 0.3-0.4		
			0 <u>,5</u>							
			-							
			1,0			Borehole SB106 terminated at 1m		_		
			-							
			-							
			1,5							
			_							
			2,0							

		F	N	VI	RC	DN	I	BOREHOLE	NUMBER SB107 PAGE 1 OF
СП	IENT	Г_Ну	dro A	lumini	um Ku	rri Kurri 83			
DA DR	TE S	STAR NG CO	TED ONTR	30/6/ ⁻ ACTO	14 R	COMPLETED 30/6/14	R.L. SURFACE SLOPE _90°	DA` BE/	TUM
но	LE S						HOLE LOCATION _AEC8 LOGGED BY _KG CHECKED BY		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations
						FILL; Gravelly SAND, dark brown, coarse gra	lined	SB107 - 0.0-0.1	
			-			ALLUVIAL; Clayey SAND, khaki, fine grained	l, high plasticity clay		
			-					SB107 - 0.3-0.4	
			0,5						
			- 0,5						
			-						
			-						
			1,0						
			-			Borehole SB107 terminated at 1m			
			-	-					
			-	-					
			- 1 <u>,5</u>	-					
			-						
			-						
			2,0						

			'N I	\/I				BOREHOLE	NUMBER SB108 PAGE 1 OF 1
CL	IENT	Г_Ну	dro A	lumini	um Ku	DN Irri Kurri 183			
DA	TE S	STAR	red _	30/6/ [.]	14	COMPLETED _30/6/14	R.L. SURFACE	DA	тим
но	DLE S								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
			(,			FILL; Gravelly Clayey SAND, black/brown, v	vith some brick	SB108 - 0.0-0.1 DUP B	
			_						
			_					SB108 - 0.3-0.4	
			- 0 <u>,5</u>						
			_						
			_			ALLUVIUM; SAND, yellow, fine grained		_	
			_						
			1,0			Borehole SB108 terminated at 1m			
			_						
			_	-					
			_						
			- 1 <u>,5</u>						
			_						
			_						
			-						
			2,0						

			INI	\/I	D٢	DN	В	OREHOLE	NUMBER SB109 PAGE 1 OF 1
СГ	IEN	т <u>Н</u> у	dro A	lumini	um Ku	VIN Irri Kurri 83			
D4 DF	ATE S RILLI	STAR ⁻ NG C	ted _ ontr	1/7/1₄ АСТО	4 R	COMPLETED _1/7/14	R.L. SURFACE SLOPE _90°	DA	TUM
н	OLE S	SIZE							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations
BOREHOLE / IESI PIT AS130383 PHASE 2 ESA AEC 12_8_26_29_28.GPJ GINT SID AUSTRALIA.GDT 30/1/15						FILL; Gravelly SAND, coarse grained, dark i ALLUVIAL; SAND, grey, fine grained wet Borehole SB109 terminated at 1m	grey	SB109 - 0.0-0.1	

		_					E	BOREHOLE	NUMBER SB110 PAGE 1 OF 1
						DN Irri Kurri	PROJECT NAME Pha	se 2 ESA	
						83			
DA	TE S	STAR	TED	1/7/14	4	COMPLETED <u>1/7/14</u>	R.L. SURFACE	DA	.TUM
							LOGGED BY KG	СН	ECKED BY
		, <u> </u>							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desci	iption	Samples Tests Remarks	Additional Observations
						FILL; Sandy GRAVEL, medium grained		SB110 - 0.0-0.1	
			-						
			-						
								SB110 - 0.3-0.4	
			-						
			0 <u>,5</u>						
						ALLUVIAL; SAND, grey, fine grained			
			-			ALLUVIAL; SAND, yellow, fine grained, moist			
			-						
			_						
2			-						
5			1,0						
202			1,0	· · · · ·		Wet Borehole SB110 terminated at 1m			
			_						
			-	-					
0.07									
×- - -			-						
0			4 -						
			1 <u>,5</u>						
L Z			_						
BUREHULE / IEQI FII. AQIQUQQ FITAGE Z EQA AEU 12.0.20.20.20.0FU GINI Q ID AUQI FALLA GU I XU 110			-						
2									
			-						
-			_						
			2,0						

		F	N	VI	RC	DN		E	BOREHOLE	PAGE 1 OF 1
СГ	IEN	Г_ Ну	dro A	lumini	um Ku	ırri Kurri				
DA	ATE \$	STAR	TED _	1/7/14	1	COMPLETED	1/7/14	R.L. SURFACE	DA	ATUM
EC HC	QUIP DLE \$	MENT SIZE	Ha	nd Aug	ger			HOLE LOCATION AEC	4	
Method			Depth (m)	hic Log	Classification Symbol		Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly SAND, black brick at 0.7m ALLUVIAL; SAND, grey, fir Borehole SB111 terminate	ne grained	se grained with some refractory	SB111 - 0.0-0.1 SB111 - 0.4-0.5 SB111 - 0.8-0.9 SB111 - 0.8-0.9	

			' N I	\ /I			В	OREHOLE	PAGE 1 OF 1
CL	IENT	г_ Ну	dro A	lumini	um Ku	DN Jirri Kurri 183			
DA	TE S	STAR	TED _	1/7/14	4	COMPLETED _1/7/14	R.L. SURFACE	D4	ATUM
нс	DLE S								
Method	Water		Depth (m)	bhic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations
			(,			FILL; Sandy GRAVEL, khaki, medium grained		SB112 - 0.0-0.1	
			-						
			-			FILL; Gravelly SAND, dark brown, coarse graine	ed, with some refractory brick	-	
			0 <u>,5</u>					SB112 - 0.4-0.5	
			-						
			-	××××		ALLUVIAL; SAND, grey, fine grained		-	
GL/L/			-					SB112 - 0.8-0.9 DUP C	
			1,0			Borehole SB112 terminated at 1m			
			-	-					
			-						
87 ⁻ 67 ⁻ 97 ⁻ 8			-	-					
			1 <u>,5</u>	-					
383 PHASE 2			-						
I PIL ASIJU			-						
BOREHOLE / IESI PIT AST30383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT SID AUSTRALIA.GDT 30/115			-	-					
ЧОд			2,0						

			' N I	\ <i>1</i> 1			E	BOREHOLE	NUMBER SB113 PAGE 1 OF
CL	IEN1	т <u>Н</u> у	dro A	lumini	um Ku				
DA	ATE S	STAR		1/7/14	1	COMPLETED _1/7/14	R.L. SURFACE	DA ⁻	TUM
EC	QUIPI	MENT	На	nd Aug	ger		HOLE LOCATION AEC	4	
		SIZE					LOGGED BY KG	CH	ECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
						FILL; Sandy GRAVEL, medium grained, dar	k brown	SB113 - 0.0-0.1	
			-			FILL; Gravelly Sandy CLAY, brown, low plas	sticity		
			0 <u>,5</u>					SB113 - 0.4-0.5	
			-			FILL; Gravelly SAND, black, coarse grained			
			_			ALLUVIAL; SAND, grey, fine grained		SB113 - 0.8-0.9	
			<u> 1,0</u> -			Borehole SB113 terminated at 1m			
			- 1 <u>,5</u>						
			-	-					

			'N I	\ <i>1</i> 1			E	BOREHOLE	NUMBER SB114 PAGE 1 OF
CL	IENT	Г_ Ну	dro A	lumini	um Ku	DN Irri Kurri			
DA	TE S	STAR		1/7/14	4	83 COMPLETED _1/7/14	R.L. SURFACE	DA'	тим
EQ	UIP	MENT	На	nd Aug	ger		HOLE LOCATION AEC		
		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations
						FILL; Gravel, with some sand		SB114 - 0.0-0.1	
			-			FILL; Gravelly CLAY, yellow, medium plastic	city		
			0 <u>,5</u> –					SB114 - 0.4-0.5	
			-	<u>}</u>		ALLUVIAL; SAND, grey, fine grained			
			_					SB114 - 0.8-0.9	
			<u>1,0</u>			Borehole SB114 terminated at 1m			
			-	-					
			-	-					
			1 <u>,5</u>						
			-						
				-					

			'N I	\ /I			E	BOREHOLE	NUMBER SB115 PAGE 1 OF 1
CL	IENT	Г_Ну	dro A	lumini	um Ku	DN Irri Kurri			
PR	OJE		UMBE	R _ A	S1303	83	PROJECT LOCATION		
							LOGGED BY KG	СН	IECKED BY
NO		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND, brown, fine grained		SB115 - 0.0-0.1	
			-					SB115 - 0.1-0.2	
			-			FILL; Sandy GRAVEL, coarse grained, grey			
			_						
			-			ALLUVIAL; Clayey SAND, orange/brown		_	
						The owner, only by on the only go bown			
			0 <u>,5</u>						
			-						
			-						
5			-						
			10						
			1,0	<u>~//;;</u>		Borehole SB115 terminated at 1m			
202									
			_						
5									
2			-						
7									
04			-						
2			1,5						
				1					
75 6			_						
2000			-						
2									
			-						
			-	1					
			2,0						

		_					В	OREHOLE	NUMBER SB116 PAGE 1 OF 1
CL	IENT	Г_ Ну	dro A	lumini	um Ku	DN Irri Kurri			
PR	OJE		UMBE	R _ A	S1303	83	PROJECT LOCATION		
						COMPLETED1/7/14			
		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations
						FILL; Clayey SAND, brown, coarse grained w	vith some gravel	SB116 - 0.0-0.1 DUP F	
			-					SB116 - 0.1-0.2	
			-						
						FILL; Clayey GRAVEL, medium grained, gre	//brown		
			-						
			0,5						
			-						
			_						
			-			ALLUVIUM; CLAY, brown, high plasticity		_	
			_						
			1.0						
A.GU			1,0			Borehole SB116 terminated at 1m		-	
			-	-					
GINI			-						
0.970			-						
7 C7 Q7			_						
0-71									
DA AEU			1 <u>,5</u>						
			-						
BOREHOLE / IESI PIL ASI30383 PTASE Z ESA AEC 12,8,20,20,28,057, 0INI SID AUSI FALLA GUI 30/1/13			-						
			-						
LE / IC			_						
<u>ы</u>	1		2,0						

		F	N	\/I	R <i>(</i>	DN	E	BOREHOLE NUMBER SB117 PAGE 1 OF 1			
C∟	IENT	Г_Ну	/dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA			
DA	TE S	STAR	TED _	2/7/1	4	COMPLETED _2/7/14	R.L. SURFACE	DA	тим		
EQ HC	QUIPI	MENT SIZE	Ha	nd Au	ger		HOLE LOCATION AEC	12			
Method	Water	RL (m)	Depth (m)	hic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations		
				$\triangleleft \triangleleft$		BITUMEN FILL; Gravelly SAND, black, coarse grained		- SB117 - 0.0-0.1			
			-					SB117 - 0.1-0.2			
			-			With some clay, grey					
						ALLUVIAL; Clayey SAND, fine grained, grey					
			0 <u>,5</u>								
			-	-		Borehole SB117 terminated at 0.6m					
			_	_							
0			-	-							
			1 <u>,0</u>	-							
			-	-							
			-	_							
0.673 618			-	-							
7 07 07 0			-	-							
A AEU IZ			1 <u>,5</u>	-							
			-	-							
			-	-							
BUREHULE / IESI PII ASI30383 PTASE 2 ESA AEC 12_8_20_23_28:0FJ GINI SID AUSIFALIA GUI 30/1/13			-								
			-	-							
POK			2,0								

			N	\/I	D٢	N	В	OREHOLE	PAGE 1 OF		
CL	IENT	т _Ну	/dro A	lumini	um Ku	ırri Kurri		PROJECT NAME _ Phase 2 ESA			
DA DR EQ	ATE S RILLI QUIPI	STAR NG C MENT	TED ONTR	2/7/14 ACTO	4 R	COMPLETED <u>2/7/14</u>	R.L. SURFACE DATUM SLOPE 90° HOLE LOCATION AEC12 LOGGED BY KG				
		S				1					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
						BITUMEN FILL; Sandy GRAVEL, dark brown, fine to co	parse grained	SB118 - 0.0-0.1			
			-				-	SB1180-00.1-0.2			
						ALLUVIAL; SAND, grey, fine grained					
			0.5								
			0 <u>,5</u>								
			-								
			-								
			-								
			-								
			1 <u>,0</u>			Borehole SB118 terminated at 0.3m		-			
			-	-							
			_								
			_								
			1,5								
			,								
			-								
			-								
			-								
			-								
			2,0								

		F		\/I		DN	B	OREHOLE	NUMBER SB119 PAGE 1 OF 1
C∟	IENT	г_ Ну	/dro A	lumini	um Ku	VIN Irri Kurri 83			
DA DR	TE S	STAR NG C	ted _ Ontr	1/7/14 ACTO	4 R	COMPLETED _1/7/14	R.L. SURFACE SLOPE _90°	DA	TUM Aring
но	DLE S								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND, fine grained, brown, with s	ome gravel at 0.35m	SB119 - 0.0-0.1	
			-						
			-					SB119 - 0.3-0.4 DUP D	
			- 0 <u>,5</u>			ALLUVIAL; Clayey SAND, brown, fine graine	ed, clay is high plasticity		
			-						
			-						
			-						
T 30/1/15			1,0			ALLUVIAL; SAND, yellow, fine grained			
TRALIA.GD			-	-		Borehole SB119 terminated at 1m			
NT STD AUS			-	-					
25_28.GPJ_GINT_STD_AUSTRALIA.GDT_30/1/15			-	-					
EC 12_8_26_2			- 1 <u>,5</u>	-					
ASE 2 ESA AB			_	-					
AS130383 PH,			-						
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26			-						
BOREHOLE			2,0	-					

		_					В	BOREHOLE NUMBER SB120 PAGE 1 OF 1			
	•					DN					
						ırri Kurri 183		hase 2 ESA N			
						COMPLETED 1/7/14					
DR	RILLI	NG C	ONTR	АСТО	R		SLOPE	B	Earing		
								0,			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Additional Observations		
						FILL; Sandy GRAVEL, yellow/grey, coarse gr	ained, angular refractory brick(?)	SB120 - 0.0-0.1			
			-					SB120 - 0.1-0.2			
			-								
			-								
			-								
			0 <u>,5</u>								
			_								
						ALLUVIAL; Sandy CLAY, high plasticity, brow	n/yellow				
			-								
			-								
0			-								
			1,0								
ALA.GU						Borehole SB120 terminated at 1m					
			-	-							
			-								
			-								
7 07 07			_								
			1,5								
LIASE 4			-								
cocnelo			-								
BURETULE / IE31 F11 A3130305 FTASE 2 E3A AEC 12.0.20.20.20.0F1 011 910 A031 FALLA GUI 30/1/12			-								
	1		2,0	1		1		1			

							B	OREHOLE	E NUMBER SB121
		E	N١	VI	RC	N			PAGE 1 OF 1
						ırri Kurri	PROJECT NAME _ Phase	e 2 ESA	
PR	OJE		JMBEF	R_A	S1303	83	PROJECT LOCATION		
						COMPLETED			
NC	TES	;							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriptic	n	Samples Tests Remarks	Additional Observations
						FILL; Sandy GRAVEL, brown, fine to coarse grain	ned	SB121 - 0.0-0.1	
								SB121 - 0.1-0.2	
			0,5						
						Borehole SB121 terminated at 0.8m			
0/1/15									
CGDT 3			1 <u>,0</u>						
STRALIA			-						
- CINI									
28.GP.									
8_26_2									
AEC 12			1 <u>,5</u>						
2 ESA									
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15									
S130383									
PIT AS									
E / TESI									
REHOL									
B			2,0						

		_					E	BOREHOLE	NUMBER SB122 PAGE 1 OF 1			
						DN Irri Kurri	PRO JECT NAME Pha	PROJECT NAME Phase 2 ESA				
						COMPLETED 1/7/14						
							HOLE LOCATION AEC25					
							LOGGED BY KG	CH	IECKED BY			
NC		;										
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	scription	Samples Tests Remarks	Additional Observations			
						FILL; Clayey gravelly SAND, dark brown, c	oarse grained	SB122 - 0.0-0.1				
			-					SB122 - 0.1-0.2				
			-									
			-									
			0 <u>,5</u>			ALLUVIAL; Sandy CLAY, yellow/brown/gre	y, high plasticity	_				
			-									
			-									
			_									
			1,0									
			1,0			Borehole SB122 terminated at 1m						
			-									
			-									
5			_									
			-									
			1 <u>,5</u>									
			-									
			-									
הטאבווטרד / ורטו דוו אטוטטטט ווואטד 2 בטא ארט ו <u>ד"ט"בט"בט"</u> בטיסיט טואו טוד אטטווארואי סט וואוויזי			_									
			-									
ß			2,0									

							E	BOREHOLE	NUMBER SB123 PAGE 1 OF
		E	N	VI	RC	N			PAGE I OF
						ırri Kurri 183			
						COMPLETED <u>1/7/14</u>			
EQ	UIPI	MENT	Ha	nd Au	ger		HOLE LOCATION AEC	25	
							LOGGED BY KG	СН	ECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly SAND, brown/grey, coarse gr	ained	SB123 - 0.0-0.1	
			-					SB123 - 0.1-0.2	
			-						
			-						
			-						
			0 <u>,5</u>			ALLUVIAL; Sandy CLAY, orange/yellow, hig	h plasticity		
			-						
			-						
			-						
			-			ALLUVIAL; SAND, black, coarse grained			
			1,0			Borehole SB123 terminated at 1m		_	
			-	-					
			-	-					
			-						
			-						
			1 <u>,5</u>						
			-						
			-						
			-	-					
			-						
			2,0						

		F	N	\/I	RC	DN	В	OREHOLE	PAGE 1 OF 1		
CL	IEN	Г_Ну	dro A	lumini	um Ku	ırri Kurri	PROJECT NAME _ Phase 2 ESA PROJECT LOCATION				
						COMPLETED1/7/14					
							LOGGED BY KG CHECKED BY				
NC	DTES	; 									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr		Samples Tests Remarks	Additional Observations		
			_			FILL; Sandy gravelly CLAY, brown, medium p	plasticity	SB124 - 0.0-0.1			
			_					SB124 - 0.1-0.2			
			_								
			_			ALLUVIAL; Sandy CLAY, high plasticity, brow	'n	-			
			0 <u>,5</u>								
			-								
			-								
			-								
			-								
			1,0			Borehole SB124 terminated at 1m					
			-								
			-								
			_								
			-								
			1 <u>,5</u>								
			-								
			-								
			-								
			-								
			2,0								

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28.GPJ GINT STD AUSTRALIA GDT 30/1/15

							E	BOREHOLE	NUMBER SB125 PAGE 1 OF 1
						N			
						ırri Kurri 183			
						COMPLETED <u>1/7/14</u>			
		SIZE					LOGGED BY KG	СН	ECKED BY
Method	Water		Depth (m)	ohic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
						FILL; Gravelly clayey SAND, brown, fine gra	ined	SB125 - 0.0-0.1	
			-					SB125 - 0.1-0.2	
			-						
						ALLUVIAL; CLAY, high plasticity, black/oran	ige	_	
			-						
			0,5						
			-						
			-						
			-						
2			-						
5 0 			1,0			Borehole SB125 terminated at 1m		_	
			_						
			-						
			-	-					
			-	-					
			1 <u>,5</u>						
			-						
			-	-					
!			-	-					
			-						
			2,0						

		_	•	\ <i>/</i> 1			I	BOREHOLE	PAGE 1 OF 1	
						DN		0.504		
						ırri Kurri 183				
						COMPLETED <u>1/7/14</u>				
нс	DLE S	SIZE					LOGGED BY KG CHECKED BY			
NC		: 			c					
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc		Samples Tests Remarks	Additional Observations	
						FILL; Gravelly clayey SAND, dark brown, coa	arse grained	SB126 - 0.0-0.1		
			_							
			_					SB126 - 0.2-0.3		
			_			FILL; GRAVEL, coarse grained, grey		_		
			0 <u>,5</u>			ALLUVIAL; CLAY, high plasticity, orange/gre	ev mottled	_		
							y model			
			-							
			-							
			_							
			1,0			Borehole SB126 terminated at 1m		_		
			-							
			-							
			_							
			1,5							
			-							
			_							
			_							
			-							
	1		2,0							

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28.GPJ GINT STD AUSTRALIA GDT 30/1/15

							I	BOREHOLE NUMBER SB127 PAGE 1 OF 1			
CL	IENT	Г_ Ну	dro A	lumini	um Ku	DN Irri Kurri					
						83					
						COMPLETED <u>1/7/14</u>					
EQ	UIPI	MENT	Ha	nd Aug	ger		HOLE LOCATION AEC	25			
							LOGGED BY <u>KG</u>	CH	ECKED BY		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	scription	Samples Tests Remarks	Additional Observations		
						FILL; Sandy GRAVEL, brown/grey, fine to c	coarse grained	SB127 - 0.0-0.1			
			-					SB127 - 0.1-0.2			
			-			ALLUVIUM; CLAY, high plasticity, orange/g	rey mottled				
			0 <u>,5</u>					SB127 - 0.4-0.6 DUP E, DUP E1			
			-								
			1,0			Borehole SB127 terminated at 1m		_			
			-								
			- 1 <u>,5</u>								
			-								
			2,0								

		_					E	BOREHOLE NUMBER SB128 PAGE 1 OF 1			
CL	IEN1	г _Ну	/dro A	lumini	um Ku	DN Irri Kurri					
						83					
						COMPLETED <u>2/7/14</u>					
							LOGGED BY KG	СН	ECKED BY		
NC	DIES	\$ 									
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
						BITUMEN. FILL; Gravelly SAND, black, coars	e grained	SB128 - 0.0-0.1			
			-								
			-			ALLUVIAL; Clayey SAND, fine grained, grey		SB128 - 0.2-0.3			
			0.5								
			-			ALLUVIAL; SAND, grey/khaki, fine grained					
			-								
			-								
			1.0			ALLUVIAL; CLAY, grey, high plasticity					
			1,0			Borehole SB128 terminated at 1m					
			-	-							
			-								
			-								
			-								
			1 <u>,5</u>								
			-								
			-								
			-								
			-								
	1		2,0								

							В	OREHOLE	NUMBER SB129 PAGE 1 OF 1
		E	Ν	VI	RC	N			FAGE I OF I
						ırri Kurri 83			
DA	TE S	STAR	red _	2/7/14	4	COMPLETED _2/7/14	R.L. SURFACE	DA	ATUM
нс	DLE S								
Method	Water		Depth	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
						BITUMEN. FILL; Gravelly SAND, dark brow	n, coarse grained	SB129 - 0.0-0.1	
			-			FILL; Gravelly clayey SAND, brown		SB129 - 0.1-0.2	
			_						
			_						
			0 <u>,5</u>						
			_			FILL; Gravelly SAND, dark brown, coarse gr	ninod		
			_			TILL, Oraveny SAND, dark blown, doarse gr	aneu		
			-						
2			-						
25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15			1,0					SB129 - 0.9-1.0	
RALIA.GD						Borehole SB129 terminated at 1m			
TD AUSTI									
J GINTS			-						
25_28.GF			-						
C 12_8_26			- 1 <u>,5</u>						
2 ESA AE			1,0						
383 PHASE			-						
1T AS130			-						
E / TEST F			-						
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26			2,0						

			'N I'	\ <i>/</i>	OREHOLI	E NUMBER SB130 PAGE 1 OF 1			
						DN ırri Kurri		2 5 5 4	
						83			
						COMPLETED 2/7/14			
		·							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
2	>	(11)	(11)	0	00	CONCRETE. REFUSAL ON CONCRETE Borehole SB130 terminated at 0m			
			-						
			0 <u>,5</u>						
			-						
/15			-						
лт 30/1			1 <u>,0</u>						
LIA.GD									
USTRA			-						
STD A									
J GINT									
28.GP,									
26_25									
C 12_8			1,5						
ESA AE			1,3						
ASE 2 E									
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15									
AS1303									
T PIT			-						
E / TES									
SEHOL									
BO			2,0						

			N	\/I	D(DN	E	BOREHOLE	NUMBER SB131 PAGE 1 OF 1
CL	IENT	Г_ Ну	/dro A	lumini	um Ku	// 1 N Irri Kurri 183			
DA DR	TE S	STAR NG C	ted _ Ontr	2/7/14 ACTO	4 R	COMPLETED <u>2/7/14</u>	R.L. SURFACE SLOPE _90°	DA	TUM
но	DLE S	SIZE							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
			_			BITUMEN. FILL; Gravelly SAND, black, coa	rse grained	SB131 - 0.0-0.1	
			-						
			-	***		ALLUVIAL; SAND, grey/fine grained		SB131 - 0.3-0.4 DUP G	
			0 <u>,5</u>						
			-						
			-						
2			-			ALLUVIAL; Sandy CLAY, high plasticity, grey ALLUVIAL; SAND, yellow, fine grained	/		
- 			1,0			Borehole SB131 terminated at 1m		_	
			-	-					
			-	-					
			-	-					
			- 1 <u>,5</u>	-					
			-						
			-	-					
הטובווטבר / ובטו דוו אטוסטטט ווואטר ג בטא אבר ו ב <u></u> בט			-						
			2,0						

			-		• •		E	BOREHOLE	NUMBER SB132 PAGE 1 OF 1
		E	N	VI	RC	N			
						ırri Kurri 83			
						COMPLETED 2/7/14			
NC	DTES	\$							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						BITUMEN. FILL; Gravelly SAND, black, coa	rse grained	SB132 - 0.0-0.1	
			-			ALLUVIAL; CLAY, high plasticity, grey, with s	some sand		
			-					SB132 - 0.1-0.2	
			-						
			0.5						
			0,0						
			-						
			-						
			-						
/1/15			-						
GDT 30			1,0			Borehole SB132 terminated at 1m		-	
STRALIA			-	-					
STD AU			_						
sPJ GINT									
6 <u>_25_28.(</u>									
C 12_8_2			1 5						
2 ESA AE			1 <u>,5</u>						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28_58 GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-						
AS13038;			-						
EST PIT			-						
EHOLE / T			-						
BORE			2,0						

			' N I	\ /I			В	OREHOLE	NUMBER SB133 PAGE 1 OF
CL	IENT	Г_Ну	dro A	lumini	um Kı	DN Irri Kurri			
						83			
						COMPLETED 2/7/14			
		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations
				0 0 0 0		BITUMEN; NO RECOVERY			
			-	0. 0. 0. 0.					
			-			ALLUVIAL; CLAY, high plasticity, grey			
								SB133 - 0.2-0.3	
			-			ALLUVIAL; SAND, coarse grained, yellow		SB133 - 0.3-0.4 DUP H, DUP	
			-					HÍ	
			0,5						
			0,5						
			_						
			-						
			-						
			1,0						
			1,0			Borehole SB133 terminated at 1m		-	
			-						
			-						
			-						
			-						
			4 -						
			1, <u>5</u>						
			_						
			-						
			-	1					
			-						
L			2,0						

							E	BOREHOLE	E NUMBER SB134 PAGE 1 OF 1
		E	N	VI	RC	N			FAGE I OF I
						rri Kurri			
						<u>83</u> COMPLETED _2/7/14			
EC	UIP	MENT	Ha	nd Aug	ger		HOLE LOCATION AEC2	25	
		SIZE					LOGGED BY <u>KG</u>	Ci	HECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						BITUMEN. FILL; Gravelly SAND, black, coa	rse grained	SB134 - 0.0-0.1	
			-			ALLUVIAL; CLAY, high plasticity, orange/gre	ry mottled		
			-					SB134 - 0.2-0.3	
			-						
			0.5						
			0,0						
			-						
			-						
			-						
0/1/15			-						
GDT 3	-		1,0			Borehole SB134 terminated at 1m		-	
STRALIA			-	-					
STD AU			_						
PJ GINT									
<u>25_28.G</u>									
3 12 <u>8</u> 26			-						
ESA AEC			1 <u>,5</u>						
PHASE 2			-						
BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_28_58 GPJ_GINT STD AUSTRALIA.GDT_30/1/15			-						
EST PIT ,			-						
HOLE / TI			-						
BORE			2,0						

			IN	\/I		DN		BOREHOLE	NUMBER SB135 PAGE 1 OF 1
CL	IENT	Г_Ну	dro A	lumini	um Ku	ırri Kurri			
DA	TE S	STAR	TED	2/7/1	4	COMPLETED _2/7/14	R.L. SURFACE	DA	тим
EQ	UIPI	MENT	- <u>Ha</u>	nd Au	ger		SLOPE 90° BEARING HOLE LOCATION AEC25		
		s							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						BITUMEN. FILL; Gravelly SAND, black, coa	rse grained	SB135 - 0.0-0.1	
			-			Grading to grey/black		SB135 - 0.1-0.2	
			-			Very black			
			-			FILL; CLAY, high plasticity, orange/grey mot	led	SB135 - 0.3-0.4	
			0 <u>,5</u>						
			-						
			_						
			_						
61/17			-						
			1,0			Borehole SB135 terminated at 1m			
			-	-					
			-	-					
			-	-					
			-	_					
			1 <u>,5</u>						
			-						
BUREHULE / 1531 F11 A3130005 F1743E Z 534 AEC 12.0.20.20.20.0F1 011 011 AU31 F4LLA GUI 30/1/12			-						
			-						
			-						
			2,0						

		E	N	VI	RC	DN		TEST PI	T NUMBER TP101 PAGE 1 OF 1	
						rri Kurri 83	PROJECT NAME Phase 2 ESA PROJECT LOCATION			
						COMPLETED <u>26/6/14</u>				
EC	UIP	MENT	Bad	ckhoe			TEST PIT LOCATION _AEC28 LOGGED BY _KW CHECKED BY			
	TES		1			1				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri		Samples Tests Remarks	Additional Observations	
			_			FILL; Silty SAND; brown and grey with cobble	s, small with grass roots, no odour			
			_					TP101 - 0.2-0.3m		
			_							
			0 <u>,5</u>			NATURAL; CLAY; orange/red/grey mottle, no	odour			
			_			Borehole TP101 terminated at 0.6m				
			_							
			1 <u>,0</u>							
			_							
			_							
			_							
			-							
			2,0							

			N	\/I	Rر	DN		TEST PI	PAGE 1 OF 1
CL	IEN	Г_ Ну	/dro A	lumini	um Ku	VIN Irri Kurri 83			
DA	ATE S	STAR	TED _	23/6/	14	COMPLETED _23/6/14	R.L. SURFACE	DA	TUM
EC TE	QUIP	MENT PIT SIZ	Ba	ckhoe				EC28	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND; brown with grass roots, no As above; orange, no odour NATURAL; CLAY; orange/red/grey mottle, no Borehole TP102 terminated at 0.7m		TP102 - 0.3-0.4m	

			'N I	\ <i>1</i> 1				TEST P	IT NUMBER TP103 PAGE 1 OF 1
						N			
						rri Kurri F 83 F			
DA	TE S	STAR		23/6/	14	COMPLETED <u>23/6/14</u> R .	L. SURFACE	I	DATUM
						SL TE			
						IC			
NC	TES	;		1		1			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Description		Samples Tests Remarks	Additional Observations
						FILL; Silty SAND; brown and grey with cobbles, small	with grass roots, no odour		
			-						
			-				-		-
			-					TP103 - 0.2-0.4m	
			-				-		-
			0 <u>,5</u>			NATURAL; CLAY; orange/red/grey mottle, no odour			
						Borehole TP103 terminated at 0.6m			
			-						
			_	-					
			1 <u>,0</u>						
			-	-					
			_						
			-						
			-	-					
			1 <u>,5</u>						
			_						
			-						
			_	-					
			2,0						

				、 <i>/</i> ·				TEST PI	T NUMBER TP104 PAGE 1 OF 1
								0.2 554	
						ırri Kurri 183			
						COMPLETED 23/6/14			
		6 <u> </u>						0	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations
						FILL; Silty Sandy CLAY; orange/grey/red mottl odour	e with gravel, small-medium, no		
			-					TP104 - 0.0-0.2M	
			-			FILL; Silty SAND; black grey, no odour			-
			-						
			-						
			0 <u>,5</u>						-
			_					TP104 - 0.5-0.6m	
			-			As above; orange, with gravel, medium, no od	our		_
			-					TP104 -	
								0.7-0.9m	
61/1			-			Silty SAND; yellow			
10.30			1 <u>,0</u>						
ALIA.G									
AUSIK			-						
i sin'			-						
0_28.6			-						
202			-						
			1,5						
ESA AI						Borehole TP104 terminated at 1.5m			
1ASE 2			-	$\left \right $					
			_						
AS13(
			-	$\left \right $					
			-						
OKEHC									
ň			2,0						

		F	N	VI	RC	DN		TEST PI	T NUMBER TP105 PAGE 1 OF 1		
C∟	IENT	Г_Ну	dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA			
DA	TE S	STAR	TED _	23/6/ [.]	14	COMPLETED _23/6/14	R.L. SURFACE	D	DATUM		
ΤЕ		PIT SIZ						AEC28 CHECKED BY			
Method	Water						iption	Samples Tests Remarks	Additional Observations		
		. /				FILL; Silty sandy CLAY; orange/grey/red mott odour	le with gravel, small-medium, no				
			_			FILL; Silty SAND; black grey, no odour		-			
			_								
			0 <u>,5</u>					TP105 -	-		
			_					0.5-0.6M			
			_								
			_			NATURAL; silty SAND; yellow		-			
			1 <u>,0</u>								
			_			Borehole TP105 terminated at 1.1m					
			_								
			1, <u>5</u>								
			_								
			_								
			_								
			2,0								
		E	N	VI	RC	DN		TEST PI	T NUMBER TP106 PAGE 1 OF 1		
--------	-------	-----------	---	-------------	--------------------------	---	-----------------------	---------------------	-------------------------------	--	
CL	IENT	Г_Ну	dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA			
DA	TE S	STAR	TED _	23/6/	14	COMPLETED 23/6/14	R.L. SURFACE		DATUM		
EC	UIPI	MENT	Ва	ckhoe			TEST PIT LOCATION AEC	C28			
	DTES	<u> </u>		c Log	Classification Symbol	Material Des	scription	Samples Tests	Additional Observations		
Method	Water	RL (m)	Depth (m)	Graphic Log				Remarks			
			 0.5 1.0 1.5 			FILL; Silty SAND; brown and grey with cobi NATURAL; CLAY; orange/red/grey mottle, Borehole TP106 terminated at 0.8m		TP106 - 0.7-0.8m			

		E	N	VI	RC	TEST PI	T NUMBER TP107 PAGE 1 OF 1		
						ırri Kurri 183	PROJECT NAME Phase		
DA	ATE S	STAR	TED _	23/6/	14	COMPLETED _23/6/14	R.L. SURFACE	C	DATUM
EC TE	QUIPI ST F	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION AEC28 LOGGED BY KW CHECKED BY		
NC	DTES	s			Ľ				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown and grey with cobble NATURAL; CLAY; orange/red/grey mottle, no Borehole TP107 terminated at 0.7m		TP107 - 0.5-0.6m	

		E	N	VI	RC	DN		TEST PI	T NUMBER TP108 PAGE 1 OF 1
						rri Kurri 83			
DA	TE S	STAR	red _	23/6/ [.]	14	COMPLETED 23/6/14	_ R.L. SURFACE	[DATUM
EG	UIP	MENT	Bad	khoe			SLOPE BEARING TEST PIT LOCATION AEC28		
	DTES					1		`	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descriț		Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown and grey with cobbles NATURAL; CLAY; orange/red/grey mottle, no- Borehole TP108 terminated at 0.6m		TP108 - 0.3-0.4m	

BOREHOLE / TEST PIT_AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15

		F	'N	VI	RC	DN		TEST F	PIT NUMBER TP109 PAGE 1 OF 1
CL	IEN	Г_Ну	dro A	lumini	um Ku				
DA EX EQ TE	TE S CAV UIPI ST F	START ATIO	red _ N CO Ze	23/6/ NTRA	14 CTOR	COMPLETED _23/6/14	R.L. SURFACE SLOPE TEST PIT LOCATION _AE	C28	DATUM BEARING
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	ition	Samples Tests Remarks	Additional Observations
			-			FILL; silty SAND; brown and grey with cobbles	, small, with grass roots, no odour	TP109 - 0.0-0.2m	
			- 0 <u>,5</u> -			NATURAL; CLAY; orange/red/grey mottle, no	odour		
			- 1 <u>.0</u>	-		Borehole TP109 terminated at 0.7m			
			- - 1 <u>,5</u> -	-					
			- 2,0	-					

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

		F	N	\/I	RC	DN		TEST PI	T NUMBER TP110 PAGE 1 OF 1	
СГ	IENT	- Hy	dro A	lumini	um Ku	rri Kurri	PROJECT NAME			
DA	TE S	STAR	red _	23/6/	14	COMPLETED _23/6/14	R.L. SURFACE	D	DATUM	
EC	UIPI	MENT	Bad	ckhoe			TEST PIT LOCATION	C28		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations	
						FILL; Silty SAND; brown and grey with cobbles yellow NATURAL; Sandy CLAY Borehole TP110 terminated at 1.3m	s, small, with grass roots	TP110 - 0.7-0.9m		

						DN			PIT NUMBER TP111 PAGE 1 OF 1
						ırri Kurri 183			
EX	CAV	ATIO		NTRAG	CTOR	COMPLETED	SLOPE		BEARING
TE	ST F	PIT SIZ							
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
			(m) - - 0,5 - 1,0 - 1,0 - 1,5 - - 1,5			FILL; silty clay with gravel, small, and bricks (NATURAL; Silty SAND; brown, grey to 0.5m, Orange/yellow at 0.5-1.6m Borehole TP111 terminated at 1.6m		TP111 - 0.0-0.3m	
			2,0						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15

		E	N	VI	RC	DN		TEST PI	NUMBER TP112 PAGE 1 OF 1
						rri Kurri 83			
DA	TES	STAR	red _	23/6/	14	COMPLETED <u>23/6/14</u>	R.L. SURFACE	DA	ATUM
EC	UIP	MENT	Bac	ckhoe			TEST PIT LOCATION _AEC28 CHECKED BY		
		5	-•						
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
			_			FILL; sandy CLAY with gravel, small, no odo	ur	TP12 - 0.0-0.3m	
			- 0 <u>,5</u> -	****		Silty SAND; brown, grey to 0.5m, no odour, orange/yellow 0.5-1.3m			
			- 1 <u>,5</u> -			Borehole TP112 terminated at 1.3m			
			2,0						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

			' N I	١ /١				TEST PI	T NUMBER TP113 PAGE 1 OF 1		
CL	IENT	Г _Ну	dro A	lumini	um Ku	DN rri Kurri 83					
DA	TE S	STAR	FED _	23/6/ ⁻	14	COMPLETED _23/6/14	R.L. SURFACE	D	ATUM		
EQ TE	QUIPI ST P	MENT	Ba	ckhoe			TEST PIT LOCATION AEC28 LOGGED BY KW CHECKED BY				
Method	Water		Depth (m)	Graphic Log	Classification Symbol	Material Descri	iption	Samples Tests Remarks	Additional Observations		
		()	()	$\frac{\underline{x}^{1} \cdot \underline{y}}{\underline{y}} \cdot \underline{x}^{1} \cdot \underline{y}$		TOPSOIL; Silty SAND; topsoil with grass roots	s, brown				
			-			NATURAL; Sandy CLAY; grey/red/orange mo	ttled	TP113 - 0.4-0.5m			
			0 <u>,5</u> - -								
			1 <u>,0</u> -	-		Borehole TP113 terminated at 0.9m					
C INID CLD.02 CZ 07 0 71			-	-							
BUKERULE / IESI FII ASI30005 F175E Z ESA AEU 12.0_20_20_20;50 UNI 31D AUSI FALLA GUI 30/1/10			1 <u>,5</u> - -	-							
BOREHOLE / IES.				_							

		F	N	\/I	RC	DN		TEST PI	F NUMBER TP114 PAGE 1 OF 1	
CL	IENT	Г _Ну	/dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA		
DA EX	TE S CAV	star ⁻ Atio	ted N Coi	23/6/ NTRA(14 CTOR	COMPLETED _23/6/14	R.L. SURFACE	D/	ATUM	
TE	ST P		ZE							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desci	ription	Samples Tests Remarks	Additional Observations	
				$\frac{\underline{x}^{1} \cdot \underline{y}}{\underline{y}} \cdot \underline{x}^{1} \cdot \underline{y}$		TOPSOIL; Silty SAND; with grass roots, brow	'n			
			- - - 0 <u>,5</u> -			NATURAL; Sandy CLAY; grey/red/orange mo	ottled	TP114 - 0.5-0.6m		
						Borehole TP114 terminated at 0.8m		_		
J GINT STD AUSTRALIA.GDT 30/1/15			- 1 <u>,0</u> -							
BOREHOLE / IEST P/L AST30383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ_GINT STD AUSTRALIA.GDT_30/1/15										
BOREHOLE / IESI			2,0	-						

		E	N	VI	RC	DN	TEST PIT NUMBER TP115 PAGE 1 OF 1				
						rri Kurri 83	PROJECT NAME Phase 2 ESA PROJECT LOCATION				
						COMPLETED <u>23/6/14</u>					
EQ TE	UIPI	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION	TEST PIT LOCATION _AEC28 LOGGED BY _KW CHECKED BY			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	iption	Samples Tests Remarks	Additional Observations		
	>		(11)	<u>x¹/2.x¹/2</u>	00	TOPSOIL; Silty SAND; with grass roots, brow	'n				
			- - 0 <u>,5</u> -			NATURAL; Sandy CLAY; grey/red/orange mo	bttled	TP115 - 0.4-0.5m, QA1			
			1 <u>.0</u>			Borehole TP115 terminated at 0.9m					
			-								
			1 <u>,5</u> –								
			2,0								

			NI	\ /I				TEST PI	T NUMBER TP116 PAGE 1 OF 1
CL	IENT	Г_Ну	dro A	lumini	um Ku	DN rri Kurri			
DA	TE S	STAR	red _	23/6/	14	83 COMPLETED _23/6/14	R.L. SURFACE	D	ATUM
		PIT SIZ	ΖΕ				LOGGED BY KW	c	HECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations
						FILL; Silty SAND; dark brown, no odour			
			-			FILL; slag, black, no odour, PVC pipe (irrigatic		TP116 - 0.1-0.3m	
			- 0 <u>,5</u>			FILL; sandy CLAY; orange/grey mottle, broker pieces	n ceramic pipe, small concrete		
			-			NATURAL; SAND; light yellow		TP116 - 0.5-0.7m	
			-			NATONAL, SAND, light yellow			
			1 <u>,0</u> –			NATURAL; sandy CLAY; mottled orange/grey	r, no odour		
			- 1 <u>,5</u> _			Borehole TP116 terminated at 1.3m			

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15

			'N I	\ <i>1</i> 1				TEST PI	F NUMBER TP117 PAGE 1 OF 1	
						DN Irri Kurri	PROJECT NAME Pha	se 2 ESA		
PR	OJE		JMBE	R _ A	S1303	83				
						COMPLETED <u>25/6/14</u>				
							TEST PIT LOCATION AEC29			
							LOGGED BY KW	Cł	HECKED BY	
NC	DTES	s								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Deso	cription	Samples Tests Remarks	Additional Observations	
USTRALIA.GDT 30/1/15			- - 0. <u>5</u> - - 1. <u>0</u>			NATURAL SAND; light brown		TP117 - 0.5-0.6m		
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_28.GPJ GINT STD AUSTRALIA GDT 30/1/15			- - <u>1,5</u> - - - 2,0			NATURAL Sandy CLAY; yellow/red/grey mc Borehole TP117 terminated at 1.5m	ttle, stiff			

		E	N	VI	RC	DN		TEST F	PIT NUMBER TP118 PAGE 1 OF 1	
						ırri Kurri 183				
DA	TE S	STAR	red _	25/6/	14	COMPLETED _25/6/14	R.L. SURFACE		DATUM	
EC	UIP	MENT	Bad	ckhoe			TEST PIT LOCATION	SLOPE BEARING TEST PIT LOCATION _AEC29		
	ST F DTES		Έ				LOGGED BY <u>KW</u>		CHECKED BY	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations	
			((III)) 			FILL; silty SAND; brown, large concrete piece fence post, broken glass, refractory brick (sm NATURAL; Sandy CLAY; yellow, red, grey m Borehole TP118 terminated at 1.3m	all piece)	TP118 - 0.5-0.6m		
			- 2,0							

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15

		E	N	VI	RC	DN		TEST F	PIT NUMBER TP119 PAGE 1 OF 1		
CL	IEN	Г_Ну	dro A	lumini	um Ku	ırri Kurri	PROJECT NAME Phase 2 ESA PROJECT LOCATION				
DA	ATE S	STAR		25/6/ ⁻	14	COMPLETED _25/6/14	R.L. SURFACE		DATUM		
EC TE	QUIPI ST F	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION	C29			
Method	DTES		Death	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
Met	Water	RL (m)	Depth (m)	Gra	Clas Syn	FILL; silty SAND; brown with small-medium ca electrical wire, metal reinforcement, large con	obbles and gravel, plastic sheeting,				
			- - 0, <u>5</u> - - 1, <u>0</u> -			NATURAL; Sandy CLAY; mottled yellow, red,		TP119 - 0.5-0.6m			
			1 <u>,5</u> _ _ _ 2.0								

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28.GPJ GINT STD AUSTRALIA GDT 30/1/15

		E	N	VI	RC	DN		TEST PI	F NUMBER TP120 PAGE 1 OF 1
						ırri Kurri 183			
DA	ATE S	STAR	TED	25/6/ ⁻	14	COMPLETED _25/6/14	R.L. SURFACE	D/	ATUM
TE	ST F		ZE						
Method	Water		Depth	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
BOKEHOLE / IESI PII AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINI SID AUSIKALIA.GDI 30/1/15			(ini) (ini)(FILL; silty SAND; yellow with cobbles and gr imber pieces, refractory bricks, metal reinfo brown at 0.3m, no odour brown at 0.3m, no odour Borehole TP120 terminated at 1.1m	rcemènt, concrete pieces	TP120 - 0.5-0.6m	

		E	N	VI	RC	DN		TEST F	PIT NUMBER TP121 PAGE 1 OF 1
						rri Kurri 83			
						COMPLETED <u>25/6/14</u>			
ТЕ	ST F	PIT SIZ							
	DTES	; 		Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests	Additional Observations
Method	Water	RL (m)	Depth (m)	Graph				Remarks	
			- - 0, <u>5</u> - 1, <u>0</u> -			FILL; silty SAND; brown with grass roots and t NATURAL; sandy CLAY; mottled yellow, red, g Borehole TP121 terminated at 1.4m		TP121 - 0.5-0.6m	
			1 <u>,5</u> _ _ 						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28.GPJ GINT STD AUSTRALIA GDT 30/1/15

		F	N	VI	RC	DN		TEST PI	T NUMBER TP122 PAGE 1 OF 1
CL	IEN	Г_ Ну	dro A	lumini	um Ku	ırri Kurri 83			
DA	ATE S	STAR		25/6/ ⁻	14	COMPLETED <u>25/6/14</u>	R.L. SURFACE	D.	ATUM
EC TE	QUIP	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION	AEC29	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material D	escription	Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown with grass roots a NATURAL; sandy CLAY; mottled yellow, Borehole TP122 terminated at 0.9m		TP122 - 0.5-0.6m	

								TEST PI	T NUMBER TP123
			N	\/I	D/	N			PAGE 1 OF 1
						ırri Kurri			
						83			
						COMPLETED 25/6/14			
							TEST PIT LOCATION _AEC29 CHECKED BY		
		11 512 ;						U	
					_				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	tion	Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown with charcoal refractor timber pieces, no odour	y brick piece sighted, old tree		
			_						
			-						
			-						
			_	\bigotimes					
				\bigotimes					
			0 <u>,5</u>						-
								TP123 - 0.5-0.6m	
			-						-
			-						
			_						
15			-						
25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15			10						
GDT			1 <u>,0</u>						
RALIA									
AUST									
STD			-						
GINI									
8.GPJ			-						
2_8_2(-						
AEC 1;			1 <u>,5</u>						
ESA 4									
4SE 2			-			NATURAL; sandy CLAY; mottled yellow, red, g	rey, stiff, no odour		
33 PH,						· · · · · · · · · · · · · · · · · · ·			
513036			-						
NT AS									
ESTF									
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26						Porobolo TD122 torminated -t 4 0			
REHO						Borehole TP123 terminated at 1.9m			
BO			2,0						

			'N I	\ /I					TEST PI	T NUMBER TP124 PAGE 1 OF 1
						DN rri Kurri		PROJECT NAME Phase	e 2 ESA	
DA	ATE S	STAR		25/6/	14	COMPLETED _25/6/*	14	R.L. SURFACE	D	ATUM
										Earing
								TEST PIT LOCATION _AEC29 LOGGED BY _KW CHECKED BY		
		6							•	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Mate	erial Description	ı	Samples Tests Remarks	Additional Observations
						FILL; silty SAND, yellow/brown with type material (black) and small con-	rete pieces, n	oʻodour	TP124 - 0.5-0.6m	

		E	N	VI	RC	DN		TEST P	PIT NUMBER TP125 PAGE 1 OF 1
						urri Kurri 1883			
DA	ATE \$	STAR	red _	25/6/	14	COMPLETED _25/6/14	R.L. SURFACE SLOPE		DATUM
EC	QUIP	MENT	Bad	ckhoe			TEST PIT LOCATION AE	C29	
	ST F		Έ				LOGGED BY <u>_KW</u>		CHECKED BY
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations
			- - 0 <u>,5</u> - 1 <u>,0</u> -			FILL; silty SAND; brown, with small-medium g sheet, no odour NATURAL; sandy CLAY; mottled yellow, red, Borehole TP125 terminated at 1.3m		TP125 - 0.5-0.6m	
			1 <u>,5</u> _ _ 						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA GDT 30/1/15

		E	N	VI	RC	DN		TEST PI	T NUMBER TP126 PAGE 1 OF 1
						rri Kurri 83			
						COMPLETED <u>25/6/14</u>			
EG	QUIP	MENT	Ba	ckhoe			TEST PIT LOCATION	C29	
	DTES								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
			- - 0, <u>5</u> - - 1, <u>0</u>			FILL; silty SAND; brown with cobbles and gra pieces, metal reinforcement, metal sheet, ref	ractory brick, no odour	TP126 - 0.5-0.6m	
			- 1 <u>,5</u> - - - 2.0						

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

		T NUMBER TP127 PAGE 1 OF 1							
						ırri Kurri 183			
						COMPLETED <u>25/6/14</u>			
E	QUIP	MENT	Bac	ckhoe			TEST PIT LOCATION _AEC29 LOGGED BY _KW		
NC	DTES					1		1	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations
						FILL; silty SAND; brown/yellow with metal cal NATURAL; sandy CLAY; mottled yellow, red, Borehole TP127 terminated at 1.4m		TP127 - 0.5-0.6m	

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12 8 26 25 28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

		E	N	VI	RC	DN		TEST PIT	PAGE 1 OF 1	
CL	IEN	г <u>Н</u> у	dro A	lumini	um Ku	ırri Kurri 183				
DA	TE S	STAR	red _	25/6/	14	COMPLETED _ 25/6/14	R.L. SURFACE	DA	TUM	
									BEARING	
TE	ST F	PIT SIZ								
	DTES	<u> </u>								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations	
						FILL; silty SAND; brown, with gravel		TP128 - 0.0m		
			_			FILL; gravelly sandy CLAY		TP128 - 0.1-0.2m		
								TP128 - 0.2-0.3m		
			_			NATURAL; sandy CLAY				
			0 <u>,5</u>					TP128 - 0.4-0.5m		
			_							
			_							
			_							
						Borehole TP128 terminated at 0.9m				
			1 <u>,0</u>							
			_							
			_							
			_							
1			_							
1			1 <u>,5</u>							
			_							
			_							
			_							
			_							
			2,0							

								TEST PI	T NUMBER TP129 PAGE 1 OF 1
		E	N	VI	RC	N			PAGE 1 OF 1
						ırri Kurri 83			
						COMPLETED _25/6/14			
TE		PIT SIZ							
		•		Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests	Additional Observations
Method	Water	RL (m)	Depth (m)	Graph	Classit Symbo			Remarks	
						FILL; gravelly silty CLAY with metal reinforcer	nent		
			-					TP129 -	
			-					0.0-0.3m	
			_						
			-						
			0 <u>,5</u>			NATURAL; CLAY; red/grey mottle, moist, stifl			
			-						
								TP129 - 0.6-0.7m	
			-						
			-						
2			-						
			1,0						
						Borehole TP129 terminated at 1m			
			-						
			-						
5			-						
7-0-7-									
			1 <u>,5</u>						
			-						
00000			-						
הטאבווטרד / ורטו דוו אטוטטטט ווואטד 2 רטא ארט ו <u>ד"ט"בט"בט"</u> בטיסיט טואו טוע אטט ווארוואי סט אווייט									
-			-	1					
			-						
			2,0						

								TEST PI	T NUMBER TP130	
			N	VI	RC	ON			PAGE 1 OF 1	
						rri Kurri 83		e 2 ESA		
						COMPLETED _25/6/14				
							LOGGED BY KW	c	HECKED BY	
N		s								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	iption	Samples Tests Remarks	Additional Observations	
						FILL; silty SAND; brown with small-medium gr aluminium	ravel, no odour, medium pieces of			
			-							
								TP130 - 0.0-0.3m		
			-							
			-						-	
			-			NATURAL; CLAY; orange/grey mottled, no oc	lour	-		
			0,5							
			-							
								TP130 - 0.6-0.7m		
			-						_	
			-							
/15			-							
T 30/1			1,0							
IA.GD						Borehole TP130 terminated at 1m				
STRAL			-	-						
TD AU										
SINTS			-							
GPJ (-							
25_28.										
8_26			-							
EC 12			1,5							
ESA A										
ASE 2			-	-						
BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15										
AS1303			-							
PIT A			_							
/ TEST										
HOLE			-							
BORE			2,0							

		E	N	VI	RC	DN		TEST F	PIT NUMBER TP131 PAGE 1 OF 1		
						ırri Kurri 83					
EX	CAV	ATIO		ITRA	CTOR		R.L. SURFACE SLOPE TEST PIT LOCATION _AEC29		BEARING		
TE		PIT SIZ									
Method			Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations		
			- - 0, <u>5</u> - 1, <u>0</u> -			FILL; gravelly silty SAND and sandy CLAY; v tree roots, no odour		TP131 - 0.1-0.3m			
			1 <u>,5</u> 2.0								

		E	N	VI	RC	DN		TEST PIT	PAGE 1 OF 1
						urri Kurri 1883			
						COMPLETED <u>26/6/14</u>	R.L. SURFACE	DA	ATUM
TE	EQUIPMENT Backhoe								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	cription	Samples Tests Remarks	Additional Observations
			(,			FILL; gravelly silty SAND and sandy CLAY; tree roots, with coal and road tar, slight hydr	very compacted with metal scrap, ocarbon odour		
			-					TP132 - 0.1-0.2m	
			_					TP132 - 0.2-0.3m	
			_			NATURAL; sandy CLAY; grey/orange mottle	ed, strong hydrocarbon odour		
			0 <u>,5</u>					TP132 - 0.4-0.5m	
			-						
			-						
			-					TP132 -	
						Borehole TP132 terminated at 0.9m		0.8-0.9m	
			1 <u>,0</u>	-					
			-	-					
			-	-					
1			-	-					
			_ 1 <u>,5</u>	-					
			1,0						
-			_	-					
			-	-					
			2,0						

		E	N	VI	RC	DN		TEST PI	PAGE 1 OF 1	
C∟	IENT	Г_ Ну	dro A	lumini	um Ku	ırri Kurri		PROJECT NAME _ Phase 2 ESA		
DA	TE S	STAR	TED _	26/6/	14	COMPLETED <u>26/6/14</u>	R.L. SURFACE	DA	ATUM	
EQ TE	UIPI	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION	AEC31		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Desc	ription	Samples Tests Remarks	Additional Observations	
						FILL; silty SAND; brown with gravel, no odou	ır			
			-					TP133 - 0.1-0.2m		
			-			NATURAL; CLAY; grey/red mottled, moist, s	tiff, no odour	_		
			-					TP133 -		
			0 <u>,5</u>					0.4-0.5m		
			-							
			-							
			-							
			1,0			Borehole TP133 terminated at 0.9m				
			-	_						
			-	-						
			-	_						
			-	-						
			1 <u>,5</u>	-						
			-							
			-	-						
			2,0							

		E	N	VI	RC	DN		TEST PIT	PAGE 1 OF 1	
C∟	IEN1	Г_ Ну	dro A	lumini	um Ku	ırri Kurri		E _ Phase 2 ESA		
DA EX	ATE S	star /atio	TED N CO	26/6/ NTRA(14 CTOR	COMPLETED <u>26/6/14</u>	R.L. SURFACE	DA BE	.tum	
TE	ST P		ZE				LOGGED BY _KW			
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descri	ption	Samples Tests Remarks	Additional Observations	
			-			ASPHALT FILL; gravelly silty SAND and sandy CLAY; ve	ery compacted with scrap, tree	TP134 -		
			-			roots, very compacted tar layer, no odour		0.12-0.2m TP134 0 0.2-0.3m		
			-			NATURAL; sandy CLAY; grey/orange mottled	i, no odour	TP134 - 0.4-0.5m		
			-							
			-							
			- 1,0							
			-	-		Borehole TP134 terminated at 1m				
			-	-						
			-	-						
			1 <u>,5</u>	-						
			-	-						
			2,0	_						

		E	N	VI	RC	DN		TEST PIT	NUMBER TP135 PAGE 1 OF 1	
CL	IEN	Г _Ну	dro A	lumini	um Ku	ırri Kurri		Phase 2 ESA		
DA	TE S	STAR		26/6/	14	COMPLETED <u>26/6/14</u>	_ R.L. SURFACE	DA	TUM	
TE	ST F	PIT SIZ	ENT _Backhoe TEST PIT LOCATION _AEC31 T SIZE LOGGED BY _KW CHECKED BY							
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	otion	Samples Tests Remarks	Additional Observations	
			-			FILL; gravelly sity SAND and sandy CLAY; ve tree roots, no odour Tar Layer NATURAL; sandy CLAY; grey/orange mottled,		TP135 - 0.1-0.15m TP135 - 0.15-0.2m TP135 - 0.2-0.3m TP135 -		
50 F10			0 <u>,5</u> _ _ _ 1,0			No gravel from 0.5m onwards		0.4-0.5m		
די 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12				· · · · · · · · · · · · · · · · · · ·		Borehole TP135 terminated at 1m				

		E	N	VI	RC	DN		TEST PI	T NUMBER TP136 PAGE 1 OF 1	
						ırri Kurri 183	PROJECT NAME _ Phase 2 ESA PROJECT LOCATION			
DA	TE S	STAR	red _	26/6/	14	COMPLETED <u>26/6/14</u>	R.L. SURFACE	D	ATUM	
EQ	UIPI	MENT	Bac	khoe			_ TEST PIT LOCATION _ AE	EC31		
		T PIT SIZE TES				C				
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descript	ion	Samples Tests Remarks	Additional Observations	
						ASPHALT/TAR overlying				
						FILL; gravelly silty SAND and sandy CLAY; very tree roots, no odour	compacted with metal scrap,	TP136 - 0.1-0.2m, QA2a		
			_			NATURAL; sandy CLAY; with gravel				
			0 <u>,5</u>			No gravel 0.4m onwards		TP136 - 0.4-0.5m		
			_							
				/////		Borehole TP136 terminated at 0.8m		-		
			_							
			1 <u>,0</u>							
			_							
			_							
I			_							
1			_							
			1 <u>,5</u>							
			-							
			-							
			2,0							

		E	N	VI	RC	DN		TEST PIT	PAGE 1 OF 1
						rri Kurri 83		PROJECT NAME _ Phase 2 ESA	
						COMPLETED <u>26/6/14</u>			
EQ TE	QUIPMENT Backhoe EST PIT SIZE OTES						_ TEST PIT LOCATION _AE	C31	
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descrip	tion	Samples Tests Remarks	Additional Observations
						silty SAND; pieces of glass and concrete		TP137 - Surface	
			-			FILL; gravelly silty SAND, brown, no odour		TP 137 - 0.1-0.2m	
			_					TP137 - 0.2-0.3m	
			0,5			NATURAL; sandy CLAY; mottled red/grey/brow no gravel from 0.4m onwards	vn, very slight hydrocarbon odour,	TP137 - 0.4-0.5m	
			-						
			-						
			1 <u>,0</u>			Develop TD127 to minimum of 4.4 m			
			-			Borehole TP137 terminated at 1.1m			
			- 1 <u>,5</u>						
			-						
			2,0						

ē č

		E	N	VI	RC	ON		TEST PIT NUMBER TP13 PAGE 1 OF		
						rri Kurri 83	PROJECT NAME _ Phase 2 ESA PROJECT LOCATION			
DA	TE S	STAR	TED _	26/6/	14	COMPLETED <u>26/6/14</u>	R.L. SURFACE	DAT	FUM	
EQ TE	UIPI	MENT PIT SIZ	Ba	ckhoe			TEST PIT LOCATION	AEC31		
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	ption	Samples Tests Remarks	Additional Observations	
	-	()	(,			FILL; silty sandy CLAY; brown with gravel (srr	all)	TP138 - Surface		
			-					TP138 - 0.1-0.2m		
			-					TP138 - 0.2-0.3m		
			0,5					TP138 - 0.4-0.5m		
			0,5			NATURAL; sandy CLAY; mottled brown/red/g	rey, no odour			
			-					TP138 - 0.6-0.7m		
			-							
5			1.0							
3			1,0			Borehole TP138 terminated at 1m				
			-	-						
			-	-						
			-	-						
			1 <u>,5</u>	-						
			-							
			-							
			2,0							

		E	N	VI	RC	DN		TEST PIT	PAGE 1 OF 1		
CL		Г_ Ну	dro A	lumini	um Ku	ırri Kurri			e 2 ESA		
DA	ATE S	STAR	red _	26/6/	14	COMPLETED _26/6/14	R.L. SURFACE I		TUM		
NC	DTES	s	1								
Method	Water	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Descr	iption	Samples Tests Remarks	Additional Observations		
						FILL; silty sandy CLAY; brown with gravel (sm	nall), no odour	TP139 - Surface			
			_					TP139 - 0.1-0.2m			
			_			NATURAL; sandy CLAY; red/gre/brown mottl	ed, no odour	TP139 - 0.2-0.3m			
			_								
			0 <u>,5</u>					0.4-0.5m			
			_								
			_								
			_								
			1 <u>,0</u>								
			_								
						Borehole TP139 terminated at 1.2m		_			
1			_								
			- 1 <u>,5</u>								
			_								
			_								
			_								
			2,0								

BOREHOLE / TEST PIT AS130383 PHASE 2 ESA AEC 12_8_26_25_28.GPJ GINT STD AUSTRALIA.GDT 30/1/15

NUMBER TP140 PAGE 1 OF 1	TEST PIT		N	RC	VI	N	E		
	AME Phase 2 ESA OCATION			um Kur 313038					
UM	DAT	R.L. SURFACE	COMPLETED26/6/14	4	26/6/1	red _	TAR	TE S	DA
							IT SIZ		TE
Additional Observations	Samples Tests Remarks	ription	Material Des	Classification Symbol	Graphic Log	Depth (m)	RL (m)	Water	Method
	TP140 - Surface		; gravelly sandy CLAY				. ,		
	TP140 - 0.1-0.2m	/red mottled, no odour	FURAL; sandy CLAY; brown/orange/gre			_			
	TP140 - 0.2-0.3m					_			
	TP140 - 0.4-0.5m					0 <u>,5</u>			
						1,0			
			ehole TP140 terminated at 1m			_			
						_			
						-			
						_			
						_			
						_			
						- 1 <u>.5</u> - - 2,0			

Appendix G

Laboratory Reports for Soil
НЕС II. SR109: 0- Dr I З0[6] [14] S01. X N НЕС II. SR109: 0- Dr I З0[6] [14] S01. X N НЕС I. SR109: 0- Dr I S0[6] [14] S01. X N НЕС I. SR109: 0- Dr I S01. X N N НЕС 2. SR103: 0- Dr I X X N N НЕС 2. SR103: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2. SR105: 0- Dr I X X N N НЕС 2.	Client Sample ID Client Sample ID Client Sample ID Sampled Type of Sample ID Sampled Type of Sampled Sampled Type of Sampled ID Sampled Type of Sampled ID SampleD Sample		KGT EEN MELDE ENVIRON COYP & COM Or choose: (standard) 1 day / 3 day 4962 5 4444 Fax: 4962 5888 Note: Inform lab in advance if urgent turnaround is required - surchange applies	s: Suite 19B, Level 2, 50 Glebe Rd Envirolab Services Quote No.: Phone: Dre Junchon NSW 2291 Date results required: Fax:	IRSTY GREENFIELD PONO:	ENVIRON Mgr: FLONA ROBINSON HUDBO ASI 30383		roldb au au au about the you can No: 112 f Received No: 112 f Received	Envirolab Services 12 Ashley St, Chatswood, N Phone: 02 9910 6200 Fax: 02 9910 6201 E-mail: ahie@envirolabsen Contact: Aileen Hie	ISTODY - Client AB SERVICES The and Number: The and Number: AS130383 Vices Quote No. : Vices Quote No. : Vices Quote No. : Prices Quote No. : Tedured: Tedured: Teta I day / 3 day In advance If ugent tumaround is required. Teta Required: Teta Required: Teta Required: Teta Required: Teta Required: Teta Required: Teta I day / 2 day / 3 day Teta Required: Teta I day / 2 day / 3 day Teta I day / 2 day / 3 day Teta Required: Teta I day / 2 day / 3 day Teta I day / 3 day	CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN CHAIN	DVLLDN DV	ENVIRON ENVIRON FROND ROD UNE JUNCHOR NE JUNCHOR NE JUNCHOR NEC 50103:00 AECI 58104:0 AEC2 58103:0 AEC2 58104:0 AEC2 58103:0 AEC2 58104:0 AEC2 58105:0 AEC2 58105	Client: E Project Mgr: Sampler: K Address: Sc Email: Kg Phone: L Phone: L P
---	--	--	--	---	------------------------	--	--	---	--	---	---	--	--	--

			CHAIN	010	OF CUSTODY - Client	- ≻o	Clier	Jt				Envirolah
				NVIRO	ENVIROLAB SERVICES	NICES						
Project Mgr: FON	I: FIONA ROBIN	NOS		Client Pro HUC	Client Project Name and Number: H9D/Z0 AS/3038	e and Number: ASI30383	cr.		Envi 17 A	Envirolab Services	es Minord Mi	-20C M
Sampler: 1	REET	Ē		PO No.:							NI 'noow	1007 'AAC
Address:	Address: Switc198, Level 2,	B	Clebeld	Envirolab	Envirolab Services Quote No. :	e No. :			Phon	Phone: 02 9910 6200	0	
Email: Kg	DINU 01/10	MCN	141	Date resul	Date results required:				Fax:	02 9910 6201	11	
		ANNIOTICUTO :COM	Dicom	Or choose	Or choose: standard / 1 day / 2 day / 3 day	l day / 2 da	ly / 3 day		E-ma	E-mail: ahie@envirolabservices.com.au	olabserv	ices.com.au
Phone: 4	4962 Sytut	Fax: 4962	2 5888	Note: Inform lab i surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	urgent tumaro	und is required -		Cont	Contact: Aileen Hie		
	Sample information	mation	2011 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 - 1012 -				Tests R	Tests Required			•	
Envirolab Sample ID	Client Sample ID	Date	Type of sample	signos Strons SHAO	Dens/par							Comments Provide as much information about the sample as you can
IT.	AEC2 MW103:0-0.1	30/6/14	SOIL	2		\downarrow		Ţ			╉	
16	AECZ MW103:0:3-04	1		X				1				
Ę.	AE2711W104:0-0.1			K								
2	AECZ MWICH: 0.3-04			X								
received	NOTIECEIVER/AECS MWIDS:0-0-1			X	X							
-	ALCS M WIOS: 0.3-0.4			X	X						+	
60	ALCS MW105: 0.9-1.0				X						+	
30				X								
1	DUP B	-	•	X								
		•										
											+	
telinquished	Relinquished by (company):			Received by	Received by (company):	415			Camilo	Beceived. Col		
Print Name:				Print Name:		Dound	2			somples received:	Ambient	(circle one)
Date & Time:				Date & Time:		NITER	Co. 81 1	0	Temper	Temperature Recieved at:		(if applicable)
Signature:				Cianter			1			Iransported by: Hand delivered / courier	ivered / co	ourier

			CHAIN	OF	OF CUSTODY - Client	OD	7-0	lien	Ļ				Entralet	
			E	NVIR	ENVIROLAB SERVICES	ERVIO	CES						LIIVITOIdu	
Client: Proiect Mar:	FUNKON	1 V V		Client P	Client Project Name and Number:	mn Num	ber:			Env	Envirolab Services	ervices		Γ
Sampler:	CLESTU	SILPENFUEN	Q	PO No.:	n Y N	10 DU	202			12 4	shley St,	Chatswood	12 Ashley St, Chatswood, NSW, 2067	
Address: SLUHC	19.0	2,500	lebe Rd	Envirola	Envirolab Services Quote No. :	Quote No.				Phor	Phone: 02 9910 6200	0 6200		
	nonhunear	NSWZ	1291	Date res	Date results required:	:p:		-		Fax:		02 9910 6201		
Email: KG	A C	NULON	Wordwind Wor	Or choo	Or choose standard 1 day / 2 day / 3 day Note: Inform lah in advance if incont 4 monutual is noticed	d 1 day	/ 2 day /	3 day		E-m	ail: ahie@	envirolabs	E-mail: ahie@envirolabservices.com.au	H. Constanting
Phone: L	Phone: 4010 50444	Fax: FC	Fax: 4102588	surcharge applies	applies					Cont	Contact: Aileen Hie	n Hie		
	Sample information	nation	e la					Tests Required	squired				Comments	T
Envirolab Sample ID	Client Sample ID	Date	Type of sample	adrion	SHAO							OTOH	Inform Sam	Q
72	AECS MINING OF AL		CAL	JK	1	+	1			-				
23	AEC8 MINITY: 03-0-4			Ì			1			•				
24	AECS MWIOT O 15-0.35			X	X			+	+			X		Τ
W	AES MWIG: 03-04					+	1							Т
26	AECS SB 09:0-01			Ŕ	X			+	1		+			Т
t	AEC856169:0-3-0.4													Τ
26	AC(8)6110:0-0.1	+		X	X									Τ
	AEC4 SBIII: 0-0-1				X		1					X		Π
	RC458111:0.4-05			ľ	X	+		+	+					Т
	AECY 58111: 08-0.9							+-				X		Τ
	ARHSBIN:0-0.1	-			X									Τ
24	0.4			7	V									Τ
7	NE4425 2015 1195 4000	₽	*	1	X							X		Τ
Relinquished	Relinquished by (company):		T	Pacainted		-	- /12	-		1	-	_		Т
Print Name:				Drint Name:	Deint Name:		20			Sample	es Received	Cool or Amb	Samples Received: Cool or Ambient (circle one)	
Date & Time:				Date & Time.	ime.	the C	212	1.100	5	Tempe	Temperature Recieved at:	ved at:	(if applicable)	
Signature:				Signature:	i		Dave	1000		Iransp	orted by: H	Transported by: Hand delivered / courier	/ courier	
							2						rage No:	٦

			CHAIN	OF	OF CUSTODY - Client	ODΥ	- Cli	ent				Emilicalah	
			Ξ	NVIR	ENVIROLAB SERVICES	ERVICE	S					TIINI (NIGH	
Client: Project Mgr:	FIDNA KOB	Mosul		HUDRO	Nam	ie and Number: ASI3038.2	5		<u>可</u> 5	Envirolab Services	Prices hatewood	TOOL MON	T
Sampler:	URSINGER	VFIELD		PO No.:		-)		1		underwood,	1007 'AACM	
Addressive	Bleve	Suchepe	Rd	Envirola	Envirolab Services Quote No. :	uote No. :			4 	Phone: 02 9910 6200	0 6200		
		JUNCHON NSW	1251	Date res	Date results required:				Fax:	K: 02 991	02 9910 6201		
Email: KO	Email: KGYRENDOJOPY	SPAULTON (NP)	B	Or choos	Or choose: standard 1 day / 2 day / 3 day) 1 day / 2	day / 3 day		ш.	nail: ahie@	envirolabse	E-mail: ahie@envirolabservices.com.au	
Phone: 4	4962S444	Fax: UP1615888	15888	Note: Inform lab i surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	e if urgent turn.	around is requi	- pau		Contact: Aileen Hie	, Hio		
	Sample information	nation					Te	Tests Required					Т
Emotion				वता व		-						Comments	
Sample ID	Client Sample ID	Date	Type of sample	12012	ZHA9						Sholt	Provide as much information about the sample as you can	
36	AE45813:0-0.(]	11714	2011			F			╞				T
Τ	F	-	_		X								Т
	NEC458113:08-00	-									X		Т
Τ	HECH SHI14:0-0-1	_		$\langle \rangle$	X								Т
2					X								Т
2	39	4									X		T
1~7	AFCI25015:0-0-1	+		X		-	+						
	12	Ŧ		X	+		+				X		
1	AEC125B16:0.1-0.7			X			+						Т
	AEC75581P1:0-01			X									Т
+>>	NEC255819 :0-3-04			X									Т
de	ALZS S6 20:0-0-1			X									Т
	10-1-0:0719CS75H	-	Ð							-	Х		
Relinquished	Relinquished by (company):			Received	Received hv (company).	- 4	-						Т
Print Name:				Print Name:	indimon' In	Alman S	e		Sam	Samples Received: Cool or Ambient (circle one)	Cool or Ambie	nt (circle one)	
Date & Time:				Date & Time:	.em	2/2		04.01		Temperature Recieved at:	ved at:	(if applicable)	
Signature:				Signature.		19	X	22	Iran	Transported by: Hand delivered / courier	ind delivered /	courier	
				סואוופרחי		11	- / MAN -		-			Page No:	7

			CHAIN	L O	OF CUSTODY - Client	λd0.	D '	ient					C & LL
			EN	NVIR	VIROLAB SERVICES	ERVIC	ES						LIIVITOIdu
Client: Project Mgr:	FIONA ROBIN	KUN		Client P.	Client Project Name and Number: Hいいりの AS Iス035	AS 120282	282			Envirol	Envirolab Services	ices	
Sampler:	NU GKEE	NFLAC		PO No.:		000					y st, cna	ILSW000,	12 ASITIEY SC, CRATSWOOD, NSW, 2067
Address:	RB/	2,50	Glebe Rd	Envirola	Envirolab Services Quote No. :	uote No. :				Phone: 0	Phone: 02 9910 6200	200	
	I he Junchon	NSN	1251	Date res	Date results required:	ä				Fax: 0	02 9910 6201	100	
Email: Ko	Keyrenneldoen	VIRONA	deenvironianprom	Or choo	Or choose: standard / 1 day / 2 day / 3 day	y 1 day / 2	day / 3 d	Ay		E-mail: a	ahie@env	rirolabse	E-mail: ahie@envirolabservices.com.au
Phone:	Herb2Stright	Fax: 496	Fax: 491625888	Note: Inform lab i surcharge applies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	ce if urgent tun	naround is re	quired -		Contact: Aileen Hie	Aileen H	<u>.</u>	
	Sample information	lation						Tests Required	pa			2	•
Envirolab Sample ID	Client Sample ID	Date	Type of sample	adition Ingmos	ZHAA							anoh	Comments Provide as much information about the sample as you can
e,	AEC2558121:0-01	h11+11	SULL		Ŧ	Ţ			+		╁		
1	AZ7558121:01-02		-	X					+		+		
2	AC2558122:0-01			X					+				
3	AEC2558122:0-1-07			L							+	2	
5	RU2558123:0-01			X								X	
7	AE2558123: 0.1-0.2			X				-				T	
2	25581											>	
t,	RCSSB24:0-0-1			X							+		
20	AEC25 SBI24: 0.1-0	2		X									
2	AEC2SSB125:0-01			X					-			-	
60	3			ł							-	+	
19	RECT5 SB126: 0-01			X					F			1	
65	ACZ558126:0.2-0.3	8	Ð										
							+						
elinquished	Relinquished by (company):			Received	Received by (company):	IN: FL	5		ſ	Samples Rec	Deived: Con	d or Amhie	Samples Received: Cool or Amhiant (circle and)
Print Name:				Print Name:	ne:	Dewniz	a.iZ			Temnerature Decieved at:	a Dariand		
Date & Time:				Date & Time:	me:	14/2	114	10:00		Transmitted hur Mand dolling / ministration	her Hand	at. dalimmad y	(ir applicable)
Signature:				Cignotuno.		10	-			non ordenna -		nalianian	/ courier

			CHAIN OF	A	SUST	NOO.	- 0	CUSTODY - Client					Fuithalah	
			Ū	NVIRC	ENVIROLAB SERVICES	ERVIC	SES							
Client: [Project Mgr:	ENVIRON FONAKOBINSON	NOS		Client Pr	Client Project Name and Number: HUDI20 ASI30383	AS13(J383			Envirolab Services 12 Ashlev St. Chatswood. NSW. 2067	Service t. Chatsw	SS N. Poor	SW/. 2067	
	KIRSTUGPEEN	TEU		PO No.:										
Address: S	Swite 198, Levelz	R	rebered	Envirolat	Envirolab Services Quote No. :	uote No. :				Phone: 02 9910 6200	910 620	0		
Email: 10	The Junction NEW 2251	Now 125	16771	Date resi	Date results required: Or rhones-retainded 1 day / 2 day	d:	c / c			Fax: 02 9	02 9910 6201	<u>स</u>		
1 1	HA61 STHUL	Fax:	لللعب مجامع	Note: Infor surcharge a	or circose: standard J L day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surctiarge applies	ce if urgent to	2 day / 3 Imaround is	day required -		E-mail: anie@envir Contact: Aileen Hie	e@envirc een Hie	labsen	E-mail: anie@envirolabservices.com.au Contact: Aileen Hie	
	Sample information	nation	14					Tests Required	lired			•	Comments	
Envirolab Sample ID	Client Sample ID	Date	Type of sample	SHUJ Zanzony Znamos	SIM / I								Provide as much information about the sample as you can	
59	AC2558127:0-01	オモニ	SOLC	X		┢	t				F	+		
	3	-	1	X		$\left \right $								
	-to: F2185	90		X										
99	Dupc			X										
ta	DUPD			X										
68	DUPE			X										
10	Out t			X),		-								
	La Yur	*	A	X		+						*	please send th	
											-		ALS for and	Lepis
)
						+	1							
Relinquished	Relinquished by (company):			Received	Received by (company):		FLS			Samples Received: Cool or Amhiant (circle one)	red: Cool or	r Amhient	t (circle one)	
Print Name:				Print Name:	le:	1	Dewnz			Temperature Recieved at:	ecieved at-		(fif annlicable)	
Date & Time:				Date & Time:	me:	3/	シート	0.01		Transmorted hvv Hand delivered / consistent	lob buck -	- / posoi		
Signature:				Signature.			2.					/ naiani	courter	
							- havan)				Pa	Page No:	

			CHAIN	OF CI	USTO	- YΟ	OF CUSTODY - Client	5. 61		Å	Furtralah
			Ē	IVIROL	ENVIROLAB SERVICES	WICES					
Client:	ENUDRN			Client Proie	ct Name and	1 Number:			Envirolab Services	ervices	
Project Mgr:	FONA ROBIN	SON		UNH	PD AS	EXECUTIVE ANDAL	-		12 Ashlev St. Chatswood, NSW. 2067	Chatswood	I, NSW, 2067
Sampler:	KIRSN GREE	NTIA	Q	PO No.:							
Address:	Surve 19, Level	el 2,50	cilebe ko	Envirolab S	Envirolab Services Quote No. :	e No. :			Phone: 02 9910 6200	10 6200	
	he Juni	N NSN	16220	Date results required:	s required:				Fax: 02 99	02 9910 6201	
Email: K	1	deenvironicy	nenp-com		standard	Or choose: standard 1 day / 2 day / 3 day	3 day		E-mail: ahie(@envirolabs	E-mail: ahie@envirolabservices.com.au
Phone: 4	49625444	Fax:		Note: Inform lab i surcharge applies	ab in advance if ies	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	t is required -		Contact: Aileen Hie	en Hie	
	Sample information	nation					Tests Required	uired			Comments
Envirolab Sample ID	Client Sample ID	Date	Type of sample	SHAD Showles						Choh	Provide as much information about the sample as you can
70	AEC12. SRIP: 0-0-1	21314	TION	X						╞	
71	NEC125817 0 1-0-2	L		X							
72	AEL12 SBI 18.0-01			X							
73	AECI258118:0.20	3		X							
4L	MECJ558129:0-0	ļ		X							
75	REC25 58129: 0-1-0-	2		Х							
76	AEC255B1291: 0-9-1-1	0		X							
55	AFC2558128: 0-0.1			X							
78	AEC2558178:0.20	3								X	
29	AEC2558131:0-01			Х							
3	AEUSSB131:0-3-014	4		X							
20	AEC2558132:0-01			X							
82	JEC2558132:0201	3								X	
58	AEC2558133:02-4	¢.3		Х							
24	NEC255B133.0304	4		Х							
linquisher	Relinquished by (company):			Received by	Received by (company):	517 :			Samples Receive	id: Cool or Am	Samples Received: Cool or Ambient (circle one)
Print Name:				Print Name:		Round			Temperature Recieved at:	cieved at:	(if applicable)
Date & Time:	ä			Date & Time:	::	3/114	10:00		Transported by: Hand delivered / courier	Hand delivere	d / murier
;											

	CHAIN	OF CUSTOI	CHAIN OF CUSTODY - Client	x	Fnvtralah
	Ξ.	ENVIROLAB SER	SERVICES		
ZIC		Client Project Name and Number: サロ ロク ム コンコン	e and Number: Δ< 12/25/12	Envirolab Services	
sampler: KIRSIN GREENFIG	5		Corre	TE ASILIEY 34, CIIALSWOOD, NOW, 2001	1007 'AAC
Address: SULVER R LEVEL 2,50	5 Clebe Ed	Envirolab Services Quote No. :	No. :	Phone: 02 9910 6200	
Function NS	IBCC M	Date results required:		Fax: 02 9910 6201	
Email: KGYPEN helde environ	Penviron corperan	Or choose: standard / 1 day / 2 day / 3 day	day / 2 day / 3 day		ices.com.au
Phone: 4962 Sylt Fax:	-	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	gent tumaround is required -	Contact: Aileen Hie	
inform			Tests Required		Comments
Envirolab Client Sample ID Sample Client Sample ID Sample ID	type of sample	SHAG SHAG Shamo		CTOH	Provide as much information about the sample as you can
MEQS 58134:0-0.12	Alth Soll				
JEC0558134:02-03	1			X	
1.1		Х			
1				X	
89 NEUSSBIJS: 03-04		X			
42 DUPG					
ULD HA					4(00) 01000
57	11	×		-	IN AN MINO RICEL
43 AECE MINIOF O.15-0.25		XX			1
alinemichad hu (communit).					
veninguished by (company):		Received by (company):	12	Samples Received: Cool or Ambient (circle one)	t (circle one)
Print Name: Date & Time:		Print Name:	Vanis 121.1	Temperature Recieved at:	(if applicable)
		Date & lime:	5/7/1 10:00	Transported by: Hand delivered / courier	courier

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

112503

/

03/07/2014

Client: Environ PO Box 560 North Sydney NSW 2060

Attention: Fiona Robinson

Sample log in details:

Your Reference:Hydro AS130383No. of samples:93 SoilsDate samples received / completed instructions received03/07/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 10/07/14
 / 10/07/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Jacinta/Hurst Laboratory Manager

VOCs in soil		112502 10	112502.02	112502.02
Our Reference: Your Reference	UNITS	112503-19 AEC8MW105	112503-92 AEC 2	112503-93 AEC 8
			MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014
Dichlorodifluoromethane	mg/kg	<1	<1	<1
Chloromethane	mg/kg	<1	<1	<1
Vinyl Chloride	mg/kg	<1	<1	<1
Bromomethane	mg/kg	<1	<1	<1
Chloroethane	mg/kg	<1	<1	<1
Trichlorofluoromethane	mg/kg	<1	<1	<1
1,1-Dichloroethene	mg/kg	<1	<1	<1
trans-1,2-dichloroethene	mg/kg	<1	<1	<1
1,1-dichloroethane	mg/kg	<1	<1	<1
cis-1,2-dichloroethene	mg/kg	<1	<1	<1
bromochloromethane	mg/kg	<1	<1	<1
chloroform	mg/kg	<1	<1	<1
2,2-dichloropropane	mg/kg	<1	<1	<1
1,2-dichloroethane	mg/kg	<1	<1	<1
1,1,1-trichloroethane	mg/kg	<1	<1	<1
1,1-dichloropropene	mg/kg	<1	<1	<1
Cyclohexane	mg/kg	<1	<1	<1
carbon tetrachloride	mg/kg	<1	<1	<1
Benzene	mg/kg	<0.2	<0.2	<0.2
dibromomethane	mg/kg	<1	<1	<1
1,2-dichloropropane	mg/kg	<1	<1	<1
trichloroethene	mg/kg	<1	<1	<1
bromodichloromethane	mg/kg	<1	<1	<1
trans-1,3-dichloropropene	mg/kg	<1	<1	<1
cis-1,3-dichloropropene	mg/kg	<1	<1	<1
1,1,2-trichloroethane	mg/kg	<1	<1	<1
Toluene	mg/kg	<0.5	<0.5	<0.5
1,3-dichloropropane	mg/kg	<1	<1	<1
dibromochloromethane	mg/kg	<1	<1	<1
1,2-dibromoethane	mg/kg	<1	<1	<1
tetrachloroethene	mg/kg	<1	<1	<1
1,1,1,2-tetrachloroethane	mg/kg	<1	<1	<1
chlorobenzene	mg/kg	<1	<1	<1
Ethylbenzene	mg/kg	<1	<1	<1
bromoform	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
styrene	mg/kg	<1	<1	<1
1,1,2,2-tetrachloroethane	mg/kg	<1	<1	<1

VOCs in soil				
Our Reference:	UNITS	112503-19	112503-92	112503-93
Your Reference		AEC8MW105	AEC2	AEC 8
5 4			MW105	MW105
Depth Date Sampled		0.3-0.4 30/06/2014	0.9-1.0	0.15-0.25 30/06/2014
Type of sample		30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil
o-Xylene	mg/kg	<1	<1	<1
1,2,3-trichloropropane	mg/kg	<1	<1	<1
isopropylbenzene	mg/kg	<1	<1	<1
bromobenzene	mg/kg	<1	<1	<1
n-propyl benzene	mg/kg	<1	<1	<1
2-chlorotoluene	mg/kg	<1	<1	<1
4-chlorotoluene	mg/kg	<1	<1	<1
1,3,5-trimethyl benzene	mg/kg	<1	<1	<1
tert-butyl benzene	mg/kg	<1	<1	<1
1,2,4-trimethyl benzene	mg/kg	<1	<1	<1
1,3-dichlorobenzene	mg/kg	<1	<1	<1
sec-butyl benzene	mg/kg	<1	<1	<1
1,4-dichlorobenzene	mg/kg	<1	<1	<1
4-isopropyl toluene	mg/kg	<1	<1	<1
1,2-dichlorobenzene	mg/kg	<1	<1	<1
n-butyl benzene	mg/kg	<1	<1	<1
1,2-dibromo-3-chloropropane	mg/kg	<1	<1	<1
1,2,4-trichlorobenzene	mg/kg	<1	<1	<1
hexachlorobutadiene	mg/kg	<1	<1	<1
1,2,3-trichlorobenzene	mg/kg	<1	<1	<1
Surrogate Dibromofluorometha	%	90	97	99
Surrogate aaa-Trifluorotoluene	%	103	97 101	102
	%	103	101	99
Surrogate Toluene-da	%	100	101	99 106
Surrogate 4-Bromofluorobenzene	70	102	102	100

Hydro AS130383

SVOCs in Soil		440500.40	110500.00	440500.00
Our Reference: Your Reference	UNITS	112503-19	112503-92 AEC 2	112503-93 AEC 8
Your Relefence		AEC8MW105	AEC2 MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	10/07/2014	10/07/2014	8/07/2014
Phenol	mg/kg	<1	<1	<1
Bis-(2-chloroethyl) ether	mg/kg	<1	<1	<1
2-Chlorophenol	mg/kg	<1	<1	<1
1,3-Dichlorobenzene	mg/kg	<1	<1	<1
1,4-Dichlorobenzene	mg/kg	<1	<1	<1
2-Methylphenol	mg/kg	<1	<1	<1
1,2-Dichlorobenzene	mg/kg	<1	<1	<1
Bis (2-chloroisopropyl) ether	mg/kg	<1	<1	<1
3/4-Methylphenol	mg/kg	<2	<2	<2
N-nitrosodi-n-propylamine	mg/kg	<1	<1	<1
Hexachloroethane	mg/kg	<1	<1	<1
Nitrobenzene	mg/kg	<1	<1	<1
Isophorone	mg/kg	<1	<1	<1
2,4-Dimethylphenol	mg/kg	<1	<1	<1
2-Nitrophenol	mg/kg	<1	<1	<1
Bis(2-chloroethoxy)methane	mg/kg	<1	<1	<1
2,4-Dichlorophenol	mg/kg	<1	<1	<1
1,2,4-Trichlorobenzene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	5
4-Chloroaniline	mg/kg	<1	<1	<1
Hexachlorobutadiene	mg/kg	<1	<1	<1
2-Methylnaphthalene	mg/kg	<1	<1	3
Hexachlorocyclopentadiene	mg/kg	<1	<1	<1
2,4,6-trichlorophenol	mg/kg	<1	<1	<1
2,4,5-trichlorophenol	mg/kg	<1	<1	<1
2-Chloronaphthalene	mg/kg	<1	<1	<1
2-nitroaniline	mg/kg	<1	<1	<1
Dimethylphthalate	mg/kg	<1	<1	<1
2,6-Dinitrotoluene	mg/kg	<1	<1	<1
Acenaphthylene	mg/kg	<1	<1	<1
3-Nitroaniline	mg/kg	<1	<1	<1
Acenaphthene	mg/kg	<1	<1	9
2,4-dinitrophenol	mg/kg	<10	<10	<10
4-nitrophenol	mg/kg	<10	<10	<10
Dibenzofuran	mg/kg	<1	<1	2
diethylphthalate	mg/kg	<1	<1	<1
4-chlorophenylphenylether	mg/kg	<1	<1	<1
4-nitroaniline	mg/kg	<1	<1	<1
Fluorene	mg/kg	<1	<1	3
				5

Envirolab Reference: 112503 Revision No: R 00

SVOCs in Soil		110500 10	110500.00	110500.00
Our Reference: Your Reference	UNITS	112503-19 AEC8MW105	112503-92 AEC 2	112503-93 AEC 8
		ALCONIVIOS	MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
2-methyl-4,6-dinitrophenol	mg/kg	<10	<10	<10
azobenzene	mg/kg	<1	<1	<1
4-bromophenylphenylether	mg/kg	<1	<1	<1
hexachlorobenzene	mg/kg	<1	<1	<1
pentachlorophenol	mg/kg	<10	<10	<10
Phenanthrene	mg/kg	<1	<1	4
Anthracene	mg/kg	<1	<1	1
carbazole	mg/kg	<1	<1	5
di-n-butylphthalate	mg/kg	<1	<1	<1
Fluoranthene	mg/kg	<1	<1	9
Pyrene	mg/kg	<1	<1	7
butylbenzylphthalate	mg/kg	<1	<1	<1
bis(2-ethylhexyl)phthalate	mg/kg	<1	<1	<1
Benzo(a)anthracene	mg/kg	<1	<1	2
Chrysene	mg/kg	<1	<1	2
di-n-octylphthalate	mg/kg	<1	<1	<1
Benzo(b)fluoranthene	mg/kg	<1	<1	1
Benzo(k)fluoranthene	mg/kg	<1	<1	<1
Benzo(a)pyrene	mg/kg	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	mg/kg	<1	<1	<1
Dibenzo(a,h)anthracene	mg/kg	<1	<1	<1
Benzo(g,h,i)perylene	mg/kg	<1	<1	<1
ethylmethanesulfonate	mg/kg	<1	<1	<1
aniline	mg/kg	<1	<1	<1
pentachloroethane	mg/kg	<1	<1	<1
benzyl alcohol	mg/kg	<1	<1	<1
acetophenone	mg/kg	<1	<1	<1
N-nitrosomorpholine	mg/kg	<1	<1	<1
N-nitrosopiperidine	mg/kg	<1	<1	<1
2,6-dichlorophenol	mg/kg	<1	<1	<1
hexachloropropene-1	mg/kg	<1	<1	<1
N-nitroso-n-butylamine	mg/kg	<1	<1	<1
safrole	mg/kg	<1	<1	<1
1,2,4,5-tetrachlorobenzene	mg/kg	<1	<1	<1
cis and trans iso-safrole	mg/kg	<1	<1	<1
1,3-dinitrobenzene	mg/kg	<1	<1	<1
pentachlorobenzene	mg/kg	<1	<1	<1
1-naphthylamine	mg/kg	<1	<1	<1
2,3,4,6-tetrachlorophenol	mg/kg	<1	<1	<1
2-naphthylamine	mg/kg	<1	<1	<1
5-nitro-o-toluidine	mg/kg	<1	<1	<1

SVOCs in Soil				
Our Reference:	UNITS	112503-19	112503-92	112503-93
Your Reference		AEC8MW105	AEC2	AEC 8
			MW105	MW105
Depth		0.3-0.4	0.9-1.0	0.15-0.25
Date Sampled		30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil
diphenylamine	mg/kg	<1	<1	<1
phenacetin	mg/kg	<1	<1	<1
pentachloronitrobenzene	mg/kg	<1	<1	<1
dinoseb	mg/kg	<1	<1	<1
methapyrilene	mg/kg	<1	<1	<1
p-dimethylaminoazobenzene	mg/kg	<1	<1	<1
2-acetylaminofluorene	mg/kg	<1	<1	<1
7,12-dimethylbenz(a)anthracene	mg/kg	<1	<1	<1
3-methylcholanthrene	mg/kg	<1	<1	<1
a-BHC	mg/kg	<1	<1	<1
b-BHC	mg/kg	<1	<1	<1
g-BHC	mg/kg	<1	<1	<1
d-BHC	mg/kg	<1	<1	<1
Heptachlor	mg/kg	<1	<1	<1
Aldrin	mg/kg	<1	<1	<1
Heptachlor Epoxide	mg/kg	<1	<1	<1
g-Chlordane	mg/kg	<1	<1	<1
a-Chlordane	mg/kg	<1	<1	<1
Endosulfan I	mg/kg	<1	<1	<1
p,p'-DDE	mg/kg	<1	<1	<1
Dieldrin	mg/kg	<1	<1	<1
Endrin	mg/kg	<1	<1	<1
p,p'-DDD	mg/kg	<1	<1	<1
Endosulfan II	mg/kg	<1	<1	<1
p,p'-DDT	mg/kg	<1	<1	<1
Endosulfan Sulphate	mg/kg	<1	<1	<1
Methoxychlor	mg/kg	<1	<1	<1
Surrogate 2-fluorophenol	%	125	127	131
Surrogate Phenol-de	%	131	136	136
Surrogate Nitrobenzene-ds	%	101	107	112
Surrogate 2-fluorobiphenyl	%	127	125	131
Surrogate 2,4,6-Tribromophenol	%	104	109	115
Surrogate p-Terphenyl-d ₁₄	%	105	107	112
	,0			

PAHs in Soil						
Our Reference:	UNITS	112503-3	112503-4	112503-5	112503-6	112503-7
Your Reference		AEC2SB103	AEC2SB103	AEC2SB104	AEC2SB104	AEC2SB105
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.6	<0.1	0.5	0.8	1.3
Fluorene	mg/kg	0.3	<0.1	0.3	0.3	0.9
Phenanthrene	mg/kg	3.8	<0.1	4.7	7.6	11
Anthracene	mg/kg	0.7	<0.1	1.1	2.0	2.6
Fluoranthene	mg/kg	13	<0.1	14	27	29
Pyrene	mg/kg	12	<0.1	13	28	27
Benzo(a)anthracene	mg/kg	11	<0.1	11	14	28
Chrysene	mg/kg	11	<0.1	12	14	31
Benzo(b+k)fluoranthene	mg/kg	25	<0.2	32	31	68
Benzo(a)pyrene	mg/kg	15	<0.05	18	21	37
Indeno(1,2,3-c,d)pyrene	mg/kg	14	<0.1	16	18	32
Dibenzo(a,h)anthracene	mg/kg	1.4	<0.1	2.0	1.7	5.2
Benzo(g,h,i)perylene	mg/kg	12	<0.1	13	16	27
Benzo(a)pyrene TEQ NEPM B1	mg/kg	21	<0.5	26	30	55
Total +ve PAH's	mg/kg	120	NIL(+)VE	140	180	300
Surrogate p-Terphenyl-d14	%	97	98	102	99	99

PAHs in Soil						
Our Reference:	UNITS	112503-8	112503-9	112503-11	112503-13	112503-15
Your Reference		AEC2SB105	AEC6SB106	AEC26 SB107	AEC8SB108	AEC2MW103
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.2	<0.1	<0.1	0.1	0.8
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	0.4
Phenanthrene	mg/kg	3.3	<0.1	0.3	1.3	6.2
Anthracene	mg/kg	0.9	<0.1	<0.1	0.3	1.4
Fluoranthene	mg/kg	12	0.2	1.8	6.0	18
Pyrene	mg/kg	11	0.3	1.7	6.0	17
Benzo(a)anthracene	mg/kg	6.7	0.3	2.0	3.4	21
Chrysene	mg/kg	6.3	0.3	3.1	3.8	19
Benzo(b+k)fluoranthene	mg/kg	18	0.7	7.0	10	49
Benzo(a)pyrene	mg/kg	12	0.30	1.9	4.9	28
Indeno(1,2,3-c,d)pyrene	mg/kg	8.2	0.3	2.3	4.7	27
Dibenzo(a,h)anthracene	mg/kg	0.9	<0.1	0.4	0.5	4.1
Benzo(g,h,i)perylene	mg/kg	6.6	0.3	1.9	4.1	21
Benzo(a)pyrene TEQ NEPM B1	mg/kg	16	<0.5	3.0	7.0	42
Total +ve PAH's	mg/kg	85	2.7	22	46	210
Surrogate p-Terphenyl-d14	%	89	112	98	102	96

PAHs in Soil						
Our Reference:	UNITS	112503-16	112503-17	112503-18	112503-19	112503-21
Your Reference		AEC2MW103	AEC2MW104	AEC2MW104	AEC8MW105	DUPB
Depth		0.3-0.4	0.0-0.1	0.3-0.4	0.3-0.4	-
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	1.7	<0.1	<0.1	0.2	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	6.3	0.4	<0.1	0.4	0.1
Fluorene	mg/kg	3.8	0.1	<0.1	0.2	<0.1
Phenanthrene	mg/kg	45	3.1	<0.1	0.2	1.2
Anthracene	mg/kg	12	0.7	<0.1	<0.1	0.3
Fluoranthene	mg/kg	140	11	0.2	0.1	5.0
Pyrene	mg/kg	140	13	0.2	0.1	5.0
Benzo(a)anthracene	mg/kg	150	11	0.2	<0.1	4.3
Chrysene	mg/kg	150	13	0.2	<0.1	5.5
Benzo(b+k)fluoranthene	mg/kg	310	42	0.4	<0.2	14
Benzo(a)pyrene	mg/kg	160	24	0.21	<0.05	6.0
Indeno(1,2,3-c,d)pyrene	mg/kg	120	18	0.2	<0.1	5.2
Dibenzo(a,h)anthracene	mg/kg	22	2.7	<0.1	<0.1	0.6
Benzo(g,h,i)perylene	mg/kg	100	15	0.2	<0.1	4.6
Benzo(a)pyrene TEQ NEPM B1	mg/kg	250	34	<0.5	<0.5	9.0
Total +ve PAH's	mg/kg	1,400	150	1.7	1.2	52
Surrogate p-Terphenyl-d14	%	107	95	107	94	95

PAHs in Soil						
Our Reference:	UNITS	112503-22	112503-24	112503-26	112503-28	112503-30
Your Reference		AEC8MW106	AEC8MW107	AEC8 SB109	AEC8SB110	AEC4SB111
Depth		0.0-0.1	0.15-0.25	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.7	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1
Fluoranthene	mg/kg	0.6	<0.1	2.2	<0.1	0.4
Pyrene	mg/kg	0.6	<0.1	2.0	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.7	<0.1	0.8	<0.1	0.3
Chrysene	mg/kg	0.9	<0.1	0.8	0.1	1.0
Benzo(b+k)fluoranthene	mg/kg	2.4	<0.2	1.5	<0.2	0.9
Benzo(a)pyrene	mg/kg	0.72	<0.05	0.88	<0.05	0.48
Indeno(1,2,3-c,d)pyrene	mg/kg	0.7	<0.1	0.6	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.7	<0.1	0.6	<0.1	0.4
Benzo(a)pyrene TEQ NEPM B1	mg/kg	1.0	<0.5	1.0	<0.5	1.0
Total +ve PAH's	mg/kg	7.6	NIL(+)VE	10	0.10	4.3
Surrogate p-Terphenyl-d14	%	101	104	95	107	92

PAHs in Soil						
Our Reference:	UNITS	112503-31	112503-33	112503-34	112503-35	112503-36
Your Reference		AEC4SB111	AEC4SB112	AEC4SB112	AEC4 SB112	AEC4SB113
Depth		0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	2.0	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	0.9	<0.1	<0.1
Phenanthrene	mg/kg	0.4	<0.1	8.1	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	1.7	<0.1	<0.1
Fluoranthene	mg/kg	1.5	<0.1	30	<0.1	0.4
Pyrene	mg/kg	1.6	<0.1	32	<0.1	0.4
Benzo(a)anthracene	mg/kg	1.2	<0.1	29	<0.1	0.3
Chrysene	mg/kg	1.1	<0.1	29	<0.1	0.6
Benzo(b+k)fluoranthene	mg/kg	2.3	<0.2	64	<0.2	0.9
Benzo(a)pyrene	mg/kg	1.5	0.06	38	<0.05	0.42
Indeno(1,2,3-c,d)pyrene	mg/kg	1.1	<0.1	28	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	3.8	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	1.0	<0.1	23	<0.1	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	2.0	<0.5	55	<0.5	1.0
Total +ve PAH's	mg/kg	12	0.060	290	NIL(+)VE	3.7
Surrogate p-Terphenyl-d14	%	98	102	98	104	80

PAHs in Soil						
Our Reference:	UNITS	112503-37	112503-39	112503-40	112503-66	112503-76
Your Reference		AEC4 SB113	AEC4SB114	AEC4SB114	DUPC	AEC25SB129
Depth		0.4-0.5	0.0-0.1	0.4-0.5	-	0.9-1.0
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	1	0.2	<0.1	<0.1
Pyrene	mg/kg	0.1	1.0	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	1.4	0.2	<0.1	<0.1
Chrysene	mg/kg	0.1	2.7	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.2	4.1	0.5	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.12	0.96	0.16	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.6	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.8	0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	2.0	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.66	13	1.7	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	92	95	92	86

PAHs in Soil			
Our Reference:	UNITS	112503-89	112503-93
Your Reference		AEC25 SB135	AEC 8
			MW105
Depth		0.3-0.4	0.15-0.25
Date Sampled Type of sample		2/07/2014 Soil	30/06/2014 Soil
Date extracted	-	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	4.0
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	7.3
Fluorene	mg/kg	0.1	2.7
Phenanthrene	mg/kg	0.3	3.4
Anthracene	mg/kg	<0.1	0.9
Fluoranthene	mg/kg	0.3	5.9
Pyrene	mg/kg	0.2	4.6
Benzo(a)anthracene	mg/kg	0.1	0.8
Chrysene	mg/kg	0.5	0.9
Benzo(b+k)fluoranthene	mg/kg	0.2	1.3
Benzo(a)pyrene	mg/kg	0.07	0.44
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	1.0
Total +ve PAH's	mg/kg	1.9	33
Surrogate p-Terphenyl-d14	%	92	98

		-				
Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	112503-1 AEC11 SB101 0.0-0.1 30/06/2014 Soil	112503-2 AEC11 SC101 0.3-0.4 30/06/2014 Soil	112503-3 AEC2 SB103 0.0-0.1 30/06/2014 Soil	112503-4 AEC2 SB103 0.3-0.4 30/06/2014 Soil	112503-5 AEC2 SB104 0.0-0.1 30/06/2014 Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	94	73	890	24	1,077
. , ,	0.0					
Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled	UNITS 	112503-6 AEC2 SB104 0.3-0.4 30/06/2014	112503-7 AEC2 SB105 0.0-0.1 30/06/2014	112503-8 AEC2 SB105 0.3-0.4 30/06/2014	112503-9 AEC6 SB106 0.0-0.1 30/06/2014	112503-11 AEC26 SB107 0.0-0.1 30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared Date analysed Fluoride (1:5 soil:water)	- - mg/kg	08/07/2014 09/07/2014 270	08/07/2014 09/07/2014 970	08/07/2014 09/07/2014 110	08/07/2014 09/07/2014 38	08/07/2014 09/07/2014 38
Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	112503-13 AEC8 SB108 0.0-0.1 30/06/2014 Soil	112503-15 AEC2MW103 0.0-0.1 30/06/2014 Soil	112503-16 AEC2MW103 0.3-0.4 30/06/2014 Soil	112503-17 AEC2MW104 0.0-0.1 30/06/2014 Soil	112503-18 AEC2MW104 0.3-0.4 30/06/2014 Soil
Date prepared	_	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	_	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	34	410	430	64	45
	iiig/kg	04	410	400	04	40
Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS	112503-20 DUPA - 30/06/2014 Soil	112503-21 DUPB - 30/06/2014 Soil	112503-22 AEC8MW106 0.0-0.1 1/07/2014 Soil	112503-24 AEC8MW107 0.15-0.25 1/07/2014 Soil	112503-26 AEC8 SB109 0.0-0.1 1/07/2014 Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	36	24	28	2.9	32
Miscellaneous Inorg - soil Our Reference: Your Reference Depth Date Sampled Type of sample	UNITS 	112503-28 AEC8 SB110 0.0-0.1 1/07/2014 Soil	112503-42 AEC12 SB115 0.0-0.1 1/07/2014 Soil	112503-44 AEC12 SB116 0.0-0.1 1/07/2014 Soil	112503-45 AEC12 SB116 0.1-0.2 1/07/2014 Soil	112503-46 AEC25 SB119 0.0-0.1 1/07/2014 Soil
Date prepared Date analysed Fluoride (1:5 soil:water)	- - mg/kg	08/07/2014 09/07/2014 2.9	08/07/2014 09/07/2014 73	08/07/2014 09/07/2014 140	08/07/2014 09/07/2014 48	08/07/2014 09/07/2014 55

		ilioo. Iliyai				
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-47	112503-48	112503-50	112503-51	112503-52
Your Reference		AEC25 SB119	AEC25 SB120	AEC25 SB121	AEC25 SB121	AEC25 SB122
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	36	3.1	20	7.8	44
Missellenseus Inerg. seil						
Miscellaneous Inorg - soil		110500 51	110500 55	440500 57	110500 50	110500 50
Our Reference:	UNITS	112503-54	112503-55	112503-57	112503-58	112503-59
Your Reference		AEC25 SB123	AEC25 SB123	AEC25 SB124	AEC25 SB124	AEC25 SB125
Depth		0.0-0.1	0.1-0.2	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	87	140	87	91	210
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-61	112503-63	112503-64	112503-65	112503-67
Your Reference		AEC25 SB126	AEC25 SB127	AEC25 SB127	AEC25 SB127	DUPD
Depth		0.0-0.1	0.0-0.1	0.1-0.2	0.4-0.6	DOFD
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	- 1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Type of Sample						
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	250	7.5	14	0.6	48
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-68	112503-69	112503-70	112503-71	112503-72
Your Reference		DUPE	DUPF	AEC12SB117	AEC12SB117	AEC12SB118
Depth		DOIL	DOIT	0.0-0.1	0.1-0.2	0.0-0.1
Date Sampled		- 1/07/2014	1/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	<0.5	130	13	24	17
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-73	112503-74	112503-75	112503-76	112503-77
Your Reference		AEC12SB118	AEC25SB129	AEC25 SB129	AEC25SB129	AEC25SB128
Depth		0.2-0.3	0.0-0.1	0.1-0.2	0.9-1.0	0.0-0.1
Date Sampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
			1	1	1	

29

mg/kg

23

Fluoride (1:5 soil:water)

23

2.7

16

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-79	112503-80	112503-81	112503-83	112503-84
Your Reference		AEC25 SB131	AEC25 SB131	AEC25 SB132	AEC25 SB133	AEC25 SB133
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.2-0.3	0.3-0.4
DateSampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	10	52	2.3	5.0	27
				[[
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112503-85	112503-87	112503-89	112503-90	112503-91
Your Reference		AEC25SB134	AEC25 SB135	AEC25 SB135	DUPG	DUPH
Depth		0.0-0.1	0.0-0.1	0.3-0.4	-	-
Date Sampled		2/07/2014	2/07/2014	2/07/2014	2/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Date analysed	-	09/07/2014	09/07/2014	09/07/2014	09/07/2014	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	2.3	22	36	37	25

Moisture						
Our Reference:	UNITS	112503-3	112503-4	112503-5	112503-6	112503-7
Your Reference		AEC2SB103	AEC2SB103	AEC2SB104	AEC2SB104	AEC2SB105
Depth		0.0-0.1	0.3-0.4	0.0-0.1	0.3-0.4	0.0-0.1
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	7.7	10	10	13	7.7
Moisture						
Our Reference:	UNITS	112503-8	112503-9	112503-11	112503-13	112503-15
Your Reference		AEC2SB105	AEC6SB106	AEC26SB107	AEC8SB108	AEC2MW103
Depth		0.3-0.4	0.0-0.1	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil	30/06/2014 Soil
Type of sample		501	501	501	501	501
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	11	4.5	7.4	11	11
		- -		I		
Moisture						
Our Reference:	UNITS	112503-16	112503-17	112503-18	112503-19	112503-21
Your Reference		AEC2MW103	AEC2MW104	AEC2MW104	AEC8MW105	DUPB
Depth		0.3-0.4	0.0-0.1	0.3-0.4	0.3-0.4	-
Date Sampled		30/06/2014	30/06/2014	30/06/2014	30/06/2014	30/06/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	8.1	9.4	12	8.7
Moisture						
Our Reference:	UNITS	112503-22	112503-24	112503-26	112503-28	112503-30
Your Reference		AEC8MW106	AEC8MW107	AEC8 SB109	AEC8 SB110	AEC4SB111
Depth		0.0-0.1	0.15-0.25	0.0-0.1	0.0-0.1	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	10	16	5.3	3.3	12
	I	1	I	I	I	I
Moisture						
Our Reference:	UNITS	112503-31	112503-33	112503-34	112503-35	112503-36
Your Reference		AEC4SB111	AEC4SB112	AEC4SB112	AEC4SB112	AEC4SB113
Depth		0.4-0.5	0.0-0.1	0.4-0.5	0.8-0.9	0.0-0.1
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	1/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	13	12	8.5	19	9.3

						-
Moisture						
Our Reference:	UNITS	112503-37	112503-39	112503-40	112503-66	112503-76
Your Reference		AEC4SB113	AEC4SB114	AEC4SB114	DUPC	AEC25 SB129
Depth		0.4-0.5	0.0-0.1	0.4-0.5	-	0.9-1.0
Date Sampled		1/07/2014	1/07/2014	1/07/2014	1/07/2014	2/07/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	7.6	6.7	7.0	14	5.1
Moisture						
Our Reference:	UNITS	112503-89	112503-92	112503-93		
Your Reference		AEC25 SB135	AEC 2	AEC 8		
			MW105	MW105		
Depth		0.3-0.4	0.9-1.0	0.15-0.25		
Date Sampled		2/07/2014	30/06/2014	30/06/2014		
Type of sample		Soil	Soil	Soil		
Date prepared	-	07/07/2014	07/07/2014	07/07/2014		
Date analysed	-	08/07/2014	08/07/2014	08/07/2014		
Moisture	%	7.5	15	16		

MethodID	Methodology Summary
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

		Clie	nt Referenc	e: Hy	ydro AS1303	83		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112503-19	07/07/2014 07/07/2014	LCS-11	07/07/2014
Date analysed	-			08/07/2 014	112503-19	08/07/2014 08/07/2014	LCS-11	08/07/2014
Dichlorodifluoromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Chloromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Vinyl Chloride	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Bromomethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Chloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Trichlorofluoromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,1-Dichloroethene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
trans-1,2-dichloroethene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,1-dichloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	114%
cis-1,2-dichloroethene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
bromochloromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
chloroform	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	103%
2,2-dichloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dichloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	104%
1,1,1-trichloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	111%
1,1-dichloropropene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Cyclohexane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
carbon tetrachloride	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Benzene	mg/kg	0.2	Org-014	<0.2	112503-19	<0.2 <0.2	[NR]	[NR]
dibromomethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dichloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
trichloroethene	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	93%
bromodichloromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	106%
trans-1,3- dichloropropene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
cis-1,3-dichloropropene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,1,2-trichloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Toluene	mg/kg	0.5	Org-014	<0.5	112503-19	<0.5 <0.5	[NR]	[NR]
1,3-dichloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
dibromochloromethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	106%
1,2-dibromoethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
tetrachloroethene	mg/kg	1	Org-014	<1	112503-19	<1 <1	LCS-11	106%
1,1,1,2- tetrachloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
chlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
Ethylbenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
bromoform	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
m+p-xylene	mg/kg	2	Org-014	~2	112503-19	<2 <2	[NR]	[NR]
styrene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,1,2,2- tetrachloroethane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
o-Xylene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,3-trichloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in soil						Base II Duplicate II % RPD		
isopropylbenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
bromobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
n-propyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
2-chlorotoluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
4-chlorotoluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,3,5-trimethyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
tert-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-trimethyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,3-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
sec-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,4-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
4-isopropyl toluene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
n-butyl benzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2-dibromo-3- chloropropane	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-trichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
hexachlorobutadiene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
1,2,3-trichlorobenzene	mg/kg	1	Org-014	<1	112503-19	<1 <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluorometha	%		Org-014	87	112503-19	90 111 RPD:21	LCS-11	115%
Surrogate aaa- Trifluorotoluene	%		Org-014	98	112503-19	103 106 RPD:3	LCS-11	106%
Surrogate Toluene-d8	%		Org-014	99	112503-19	100 103 RPD:3	LCS-11	101%
Surrogate 4- Bromofluorobenzene	%		Org-014	105	112503-19	102 103 RPD:1	LCS-11	107%

Hvdro AS130383

		Clie	nt Referenc	e: Hy	ydro AS1303	83		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOCs in Soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112503-19	7/07/2014 7/07/2014	LCS-W1	07/07/2014
Date analysed	-			10/07/2 014	112503-19	10/07/2014 10/07/2014	LCS-W1	10/07/2014
Phenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	75%
Bis-(2-chloroethyl) ether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Chlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	108%
1,3-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,4-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	78%
2-Methylphenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,2-Dichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Bis (2-chloroisopropyl) ether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3/4-Methylphenol	mg/kg	2	Org-012	~2	112503-19	<2 <2	[NR]	[NR]
N-nitrosodi-n- propylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachloroethane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Nitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Isophorone	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4-Dimethylphenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Nitrophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Bis(2-chloroethoxy) methane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4-Dichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4-Trichlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Naphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
4-Chloroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachlorobutadiene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Methylnaphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Hexachlorocyclopentadi ene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4,6-trichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,4,5-trichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-Chloronaphthalene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Dimethylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	67%
2,6-Dinitrotoluene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Acenaphthylene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3-Nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Acenaphthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	89%
2,4-dinitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]
4-nitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	LCS-W1	67%
Dibenzofuran	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
diethylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	87%
4- chlorophenylphenylether	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
4-nitroaniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]

Envirolab Reference: 112503 Revision No:

		Clie	ent Reference	e: H	lydro AS1303	83		
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOCs in Soil						Base II Duplicate II % RPD		,
Fluorene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-methyl-4,6- dinitrophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]
azobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
4-	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
bromophenylphenylether								
hexachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
pentachlorophenol	mg/kg	10	Org-012	<10	112503-19	<10 <10	[NR]	[NR]
Phenanthrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
carbazole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
di-n-butylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	80%
butylbenzylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
bis(2-ethylhexyl) phthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Benzo(a)anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Chrysene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
di-n-octylphthalate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Benzo(b)fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Benzo(k)fluoranthene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Benzo(a)pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
ethylmethanesulfonate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
aniline	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
pentachloroethane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
benzyl alcohol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
acetophenone	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
N-nitrosomorpholine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
N-nitrosopiperidine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,6-dichlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
hexachloropropene-1	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
N-nitroso-n-butylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
safrole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,2,4,5- tetrachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
cis and trans iso-safrole	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1,3-dinitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
pentachlorobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
1-naphthylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2,3,4,6-tetrachlorophenol	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-naphthylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
5-nitro-o-toluidine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
		· ·	519 512		1.2000 10		6.0.7	6.0.9

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOCs in Soil						Base II Duplicate II % RPD		
diphenylamine	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
phenacetin	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
pentachloronitrobenzene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
dinoseb	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
methapyrilene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p- dimethylaminoazobenzen e	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
2-acetylaminofluorene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
7,12-dimethylbenz(a) anthracene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
3-methylcholanthrene	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
a-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
b-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
g-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
d-BHC	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Heptachlor	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Aldrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	84%
Heptachlor Epoxide	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
g-Chlordane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
a-Chlordane	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Endosulfan I	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDE	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Dieldrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	LCS-W1	74%
Endrin	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDD	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
EndosulfanII	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
p,p'-DDT	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Methoxychlor	mg/kg	1	Org-012	<1	112503-19	<1 <1	[NR]	[NR]
Surrogate 2-fluorophenol	%		Org-012	122	112503-19	125 131 RPD:5	LCS-W1	124%
Surrogate Phenol-d6	%		Org-012	133	112503-19	131 139 RPD:6	LCS-W1	131%
Surrogate Nitrobenzene-d₅	%		Org-012	116	112503-19	101 112 RPD:10	LCS-W1	69%
Surrogate 2- fluorobiphenyl	%		Org-012	124	112503-19	127 125 RPD:2	LCS-W1	115%
Surrogate 2,4,6- Tribromophenol	%		Org-012	78	112503-19	104 109 RPD:5	LCS-W1	78%
Surrogate p-Terphenyl- d14	%		Org-012	102	112503-19	105 105 RPD:0	LCS-W1	93%

		Clie	nt Reference	e: Hy	ydro AS1303	383		
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112503-3	7/07/2014 7/07/2014	LCS-11	07/07/2014
Date analysed	-			07/07/2 014	112503-3	8/07/2014 8/07/2014	LCS-11	07/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	<0.1 <0.1	LCS-11	105%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.6 0.5 RPD:18	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.3 0.2 RPD:40	LCS-11	103%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	3.8 3.1 RPD:20	LCS-11	112%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	0.7 0.6 RPD:15	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	13 10 RPD:26	LCS-11	107%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	12 10 RPD:18	LCS-11	109%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	11 8.4 RPD:27	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	11 9.0 RPD:20	LCS-11	108%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	112503-3	25 22 RPD:13	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	112503-3	15 12 RPD:22	LCS-11	113%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	14 12 RPD:15	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	1.4 1.4 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	112503-3	12 10 RPD:18	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	81	112503-3	97 105 RPD: 8	LCS-11	99%

Client Reference:	
-------------------	--

			ient Referenc		ydro AS1303			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			09/07/2 014	112503-1	08/07/2014 08/07/2014	LCS-1	08/07/20
Date analysed	-			09/07/2 014	112503-1	09/07/2014 09/07/2014	LCS-1	09/07/20
Fluoride (1:5 soil:water)	mg/kg	0.5	Inorg-026	<0.5	112503-1	94 93 RPD:1	LCS-1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			[NT]				
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate	Spike Sm#	Spike % Rec	overy
VOCs in soil				Base+L	Duplicate+%RF	טי		
Date extracted	-		[NT]		[NT]	112503-92	07/07/201	14
Date analysed	-		[NT]		[NT]	112503-92	08/07/202	14
Dichlorodifluoromethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
Chloromethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Vinyl Chloride	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Bromomethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Chloroethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
Trichlorofluoromethane	mg/k	g	[NT]		[NT]	[NR]	[NR]	
1,1-Dichloroethene	mg/k	g	[NT]		[NT]	[NR]	[NR]	
trans-1,2-dichloroethene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
1,1-dichloroethane	mg/kg	g	[NT]		[NT]	112503-92	125%	
cis-1,2-dichloroethene	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
bromochloromethane	mg/kg	g	[NT]		[NT]	[NR]	[NR]	
chloroform	mg/kg		[NT]		[NT]	112503-92	115%	
2,2-dichloropropane	mg/kg		[NT]		[NT]	[NR]	[NR]	
1,2-dichloroethane	mg/kg		[NT]		[NT]	112503-92	117%	
1,1,1-trichloroethane	mg/k		[NT]		[NT]	112503-92	123%	
1,1-dichloropropene	mg/k		[NT]		[NT]	[NR]	[NR]	
Cyclohexane	mg/k		[NT]		[NT]	[NR]	[NR]	
carbon tetrachloride	mg/k		[NT]		[NT]	[NR]	[NR]	
Benzene	mg/k		[NT]		[NT]	[NR]	[NR]	
dibromomethane	mg/k		[NT]		[NT]	[NR]	[NR]	
1,2-dichloropropane	mg/k		[NT]		[NT]	[NR]	[NR]	
trichloroethene	mg/kg		[NT]		[NT]	112503-92	103%	
bromodichloromethane					[NT]	112503-92	116%	
	mg/kg		[NT]					
trans-1,3-dichloropropene			[NT]		[NT]	[NR]	[NR]	
cis-1,3-dichloropropene	mg/k		[NT]		[NT]	[NR]	[NR]	
1,1,2-trichloroethane	mg/k		[NT]		[NT]	[NR]	[NR]	
Toluene	mg/k		[NT]		[NT]	[NR]	[NR]	
1,3-dichloropropane	mg/k	g	[NT]		[NT]	[NR]	[NR]	

Client Reference: Hydro AS130383								
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery			
VOCs in soil			Base + Duplicate + % RPD					
dibromochloromethane	mg/kg	[NT]	[NT]	112503-92	116%			
1,2-dibromoethane	mg/kg	[NT]	[NT]	[NR]	[NR]			
tetrachloroethene	mg/kg	[NT]	[NT]	112503-92	122%			
1,1,1,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]			
chlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Ethylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
bromoform	mg/kg	[NT]	[NT]	[NR]	[NR]			
m+p-xylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
styrene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,1,2,2-tetrachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]			
o-Xylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2,3-trichloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]			
isopropylbenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
bromobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
n-propyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
2-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]			
4-chlorotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,3,5-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
tert-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2,4-trimethyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,3-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
sec-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,4-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
4-isopropyl toluene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2-dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
n-butyl benzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2-dibromo-3- chloropropane	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2,4-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]			
1,2,3-trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]			
<i>Surrogate</i> Dibromofluorometha	%	[NT]	[NT]	112503-92	120%			
Surrogate aaa- Trifluorotoluene	%	[NT]	[NT]	112503-92	104%			
Surrogate Toluene-d8	%	[NT]	[NT]	112503-92	101%			
Surrogate 4- Bromofluorobenzene	%	[NT]	[NT]	112503-92	104%			

		Client Referenc	e: Hydro AS130383		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
SVOCs in Soil			Base + Duplicate + %RPD		
Date extracted	-	[NT]	[NT]	112503-93	07/07/2014
Date analysed	-	[NT]	[NT]	112503-93	10/07/2014
Phenol	mg/kg	[NT]	[NT]	112503-93	90%
Bis-(2-chloroethyl) ether	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Chlorophenol	mg/kg	[NT]	[NT]	112503-93	118%
1,3-Dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1,4-Dichlorobenzene	mg/kg	[NT]	[NT]	112503-93	84%
2-Methylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2-Dichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Bis (2-chloroisopropyl) ether	mg/kg	[NT]	[NT]	[NR]	[NR]
3/4-Methylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosodi-n-propylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
Nitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Isophorone	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4-Dimethylphenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Nitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
Bis(2-chloroethoxy) methane	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4-Dichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4-Trichlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
Naphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-Chloroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Methylnaphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
Hexachlorocyclopentadiene	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4,6-trichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2,4,5-trichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-Chloronaphthalene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Dimethylphthalate	mg/kg	[NT]	[NT]	112503-93	81%
2,6-Dinitrotoluene	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]
3-Nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	[NT]	[NT]	112503-93	80%
2,4-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitrophenol	mg/kg	[NT]	[NT]	112503-93	76%
Dibenzofuran	mg/kg	[NT]	[NT]	[NR]	[NR]
diethylphthalate	mg/kg	[NT]	[NT]	112503-93	93%
4-chlorophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
4-nitroaniline	mg/kg	[NT]	[NT]	[NR]	[NR]
		Client Referenc	e: Hydro AS130383		
----------------------------	-------	------------------------	--------------------------	-----------	------------------
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
SVOCs in Soil			Base + Duplicate + % RPD		
Fluorene	mg/kg	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6-dinitrophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
azobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
4-bromophenylphenylether	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
Phenanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
carbazole	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-butylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Pyrene	mg/kg	[NT]	[NT]	112503-93	75%
butylbenzylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
bis(2-ethylhexyl)phthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	[NT]	[NT]	[NR]	[NR]
di-n-octylphthalate	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(b)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]
ethylmethanesulfonate	mg/kg	[NT]	[NT]	[NR]	[NR]
aniline	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachloroethane	mg/kg	[NT]	[NT]	[NR]	[NR]
benzyl alcohol	mg/kg	[NT]	[NT]	[NR]	[NR]
acetophenone	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosomorpholine	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitrosopiperidine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,6-dichlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
hexachloropropene-1	mg/kg	[NT]	[NT]	[NR]	[NR]
N-nitroso-n-butylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,2,4,5-tetrachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
cis and trans iso-safrole	mg/kg	[NT]	[NT]	[NR]	[NR]
1,3-dinitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
pentachlorobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]
1-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
2,3,4,6-tetrachlorophenol	mg/kg	[NT]	[NT]	[NR]	[NR]
2-naphthylamine	mg/kg	[NT]	[NT]	[NR]	[NR]
5-nitro-o-toluidine	mg/kg	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 112503 Revision No: R 00

		Client Reference	ce: Hydro AS130383							
QUALITY CONTROL SVOCs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery					
diphenylamine	mg/kg	[NT]	[NT]	[NR]	[NR]					
phenacetin	mg/kg	[NT]	[NT]	[NR]	[NR]					
pentachloronitrobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]					
dinoseb	mg/kg	[NT]	[NT]	[NR]	[NR]					
methapyrilene	mg/kg	[NT]	[NT]	[NR]	[NR]					
p- dimethylaminoazobenzene	mg/kg	[NT]	[NT]	[NR]	[NR]					
2-acetylaminofluorene	mg/kg	[NT]	[NT]	[NR]	[NR]					
7,12-dimethylbenz(a) anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]					
3-methylcholanthrene	mg/kg	[NT]	[NT]	[NR]	[NR]					
a-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]					
b-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]					
g-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]					
d-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]					
Heptachlor	mg/kg	[NT]	[NT]	[NR]	[NR]					
Aldrin	mg/kg	[NT]	[NT]	112503-93	88%					
Heptachlor Epoxide	mg/kg	[NT]	[NT]	[NR]	[NR]					
g-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]					
a-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]					
Endosulfanl	mg/kg	[NT]	[NT]	[NR]	[NR]					
p,p'-DDE	mg/kg	[NT]	[NT]	[NR]	[NR]					
Dieldrin	mg/kg	[NT]	[NT]	112503-93	82%					
Endrin	mg/kg	[NT]	[NT]	[NR]	[NR]					
p,p'-DDD	mg/kg	[NT]	[NT]	[NR]	[NR]					
EndosulfanII	mg/kg	[NT]	[NT]	[NR]	[NR]					
p,p'-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]					
Endosulfan Sulphate	mg/kg	[NT]	[NT]	[NR]	[NR]					
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]					
Surrogate 2-fluorophenol	%	[NT]	[NT]	112503-93	119%					
Surrogate Phenol-d6	%	[NT]	[NT]	112503-93	128%					
Surrogate Nitrobenzene- d5	%	[NT]	[NT]	112503-93	109%					
Surrogate 2-fluorobiphenyl	%	[NT]	[NT]	112503-93	121%					
Surrogate 2,4,6- Tribromophenol	%	[NT]	[NT]	112503-93	113%					
Surrogate p-Terphenyl- d14	%	[NT]	[NT]	112503-93	102%					

Client Reference: Hydro AS130383											
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery						
PAHs in Soil			Base + Duplicate + %RPD								
Date extracted	-	112503-19	7/07/2014 7/07/2014	LCS-12	07/07/2014						
Date analysed	-	112503-19	8/07/2014 8/07/2014	LCS-12	07/07/2014						
Naphthalene	mg/kg	112503-19	0.2 0.2 RPD:0	LCS-12	107%						
Acenaphthylene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Acenaphthene	mg/kg	112503-19	0.4 0.4 RPD:0	[NR]	[NR]						
Fluorene	mg/kg	112503-19	0.2 0.1 RPD:67	LCS-12	107%						
Phenanthrene	mg/kg	112503-19	0.2 0.1 RPD:67	LCS-12	114%						
Anthracene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Fluoranthene	mg/kg	112503-19	0.1 0.1 RPD:0	LCS-12	110%						
Pyrene	mg/kg	112503-19	0.1 <0.1	LCS-12	112%						
Benzo(a)anthracene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Chrysene	mg/kg	112503-19	<0.1 <0.1	LCS-12	106%						
Benzo(b+k)fluoranthene	mg/kg	112503-19	<0.2 <0.2	[NR]	[NR]						
Benzo(a)pyrene	mg/kg	112503-19	<0.05 <0.05	LCS-12	116%						
Indeno(1,2,3-c,d)pyrene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Dibenzo(a,h)anthracene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Benzo(g,h,i)perylene	mg/kg	112503-19	<0.1 <0.1	[NR]	[NR]						
Surrogate p-Terphenyl-d14	%	112503-19	94 95 RPD:1	LCS-12	101%						
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery						
Miscellaneous Inorg - soil			Base + Duplicate + %RPD								
Date prepared	-	112503-13	08/07/2014 08/07/2014	LCS-2	08/07/2014						
Date analysed	-	112503-13	09/07/2014 09/07/2014	LCS-2	09/07/2014						
Fluoride (1:5 soil:water)	mg/kg	112503-13	34 27 RPD:23	LCS-2	104%						
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery						
PAHs in Soil			Base + Duplicate + %RPD								
Date extracted	-	112503-28	7/07/2014 7/07/2014	112503-4	07/07/2014						
Date analysed	-	112503-28	8/07/2014 8/07/2014	112503-4	07/07/2014						
Naphthalene	mg/kg	112503-28	<0.1 <0.1	112503-4	87%						
Acenaphthylene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Acenaphthene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Fluorene	mg/kg	112503-28	<0.1 <0.1	112503-4	100%						
Phenanthrene	mg/kg	112503-28	<0.1 <0.1	112503-4	107%						
Anthracene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Fluoranthene	mg/kg	112503-28	<0.1 <0.1	112503-4	106%						
Pyrene	mg/kg	112503-28	<0.1 <0.1	112503-4	108%						
Benzo(a)anthracene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Chrysene	mg/kg	112503-28	0.1 0.1 RPD:0	112503-4	101%						
Benzo(b+k)fluoranthene	mg/kg	112503-28	<0.2 <0.2	[NR]	[NR]						
Benzo(a)pyrene	mg/kg	112503-28	<0.05 <0.05	112503-4	114%						
Indeno(1,2,3-c,d)pyrene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Dibenzo(a,h)anthracene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						
Benzo(g,h,i)perylene	mg/kg	112503-28	<0.1 <0.1	[NR]	[NR]						

		Client Reference	e: Hydro AS130383					
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Surrogate p-Terphenyl-d14	%	112503-28	107 109 RPD:2	112503-4	100%			
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date prepared	-	112503-28	08/07/2014 08/07/2014	LCS-3	08/07/2014			
Date analysed	-	112503-28	09/07/2014 09/07/2014	LCS-3	09/07/2014			
Fluoride (1:5 soil:water)	mg/kg	112503-28	2.9 3.1 RPD:7	LCS-3	102%			
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	[NT]	[NT]	112503-93	07/07/2014			
Date analysed	-	[NT]	[NT]	112503-93	07/07/2014			
Naphthalene	mg/kg	[NT]	[NT]	112503-93	94%			
Acenaphthylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Acenaphthene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Fluorene	mg/kg	[NT]	[NT]	112503-93	101%			
Phenanthrene	mg/kg	[NT]	[NT]	112503-93	86%			
Anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Fluoranthene	mg/kg	[NT]	[NT]	112503-93	#			
Pyrene	mg/kg	[NT]	[NT]	112503-93	64%			
Benzo(a)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Chrysene	mg/kg	[NT]	[NT]	112503-93	#			
Benzo(b+k)fluoranthene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	[NT]	[NT]	112503-93	#			
Indeno(1,2,3-c,d)pyrene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	[NT]	[NT]	[NR]	[NR]			
Surrogate p-Terphenyl-d14	%	[NT]	[NT]	112503-93	98%			

	Client Referenc	e: Hydro AS130383			
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112503-54	08/07/2014 08/07/2014	112503-2	08/07/2014
Date analysed	-	112503-54	09/07/2014 09/07/2014	112503-2	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	112503-54	87 88 RPD:1	112503-2	#
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112503-68	08/07/2014 08/07/2014	112503-69	08/07/2014
Date analysed	-	112503-68	09/07/2014 09/07/2014	112503-69	09/07/2014
Fluoride (1:5 soil:water)	mg/kg	112503-68	<0.5 <0.5	112503-69	#
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112503-81	08/07/2014 08/07/2014		
Date analysed	-	112503-81	09/07/2014 09/07/2014		
Fluoride (1:5 soil:water)	mg/kg	112503-81	2.3 2.2 RPD:4		

Report Comments:

PAH (IN SOIL) # Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Fluoride(1:5 soil:water): # Percent recovery is not possible to report as the high concentration of analytes in the sample/s have caused interference.

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Aileen Hie

From: Sent: To: Subject: Kirsty Greenfield [kgreenfield@environcorp.com] Monday, 14 July 2014 10:51 AM Aileen Hie Your reference 112590

Hi Aileen,

Based on the results in your batch 112590, I'd like to organise additional PAH analysis for the following samples (currently on hold):

112590 A Std T/A dre 21/7

HA106 0.15. HA107 0.2 -164 HA115 0.2-0.3 -121 HA116 0.3-0.4 -124 HA117 0.25-0.35 -126

Thanks,

Kirsty Greenfield | Environmental Consultant ENVIRON Australia Pty Ltd Eastpoint Complex | Suite 19B, Level 2 50 Glebe Road | The Junction, NSW 2291 T: 02 4962 5444| F: 02 4962 5888 | M: 0407 149 176 kgreenfield@environcorp.com

This message contains information that may be confidential, privileged or otherwise protected by law from disclosure. It is intended for the exclusive use of the Addressee(s). Unless you are the addressee or authorized agent of the addressee, you may not review, copy, distribute or disclose to anyone the message or any information contained within. If you have received this message in error, please contact the sender by electronic reply to email@environcorp.com and immediately delete all copies of the message.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

112590-A

Client: Environ (Newcastle) Suite 19B, Level 2 50 Glebe Rd The Junction NSW 2291

Attention: Kate Woods, Kirsty Greenfield

Sample log in details:

Your Reference:	AS 130383							
No. of samples:	Additional testing on soils							
Date samples received / completed instructions received	4/7/2014	/	14/07/14					

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 21/07/14
 / 17/07/14

 Date of Preliminary Report:
 Not Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

PAHs in Soil						
Our Reference:	UNITS	112590-A-99	112590-A-	112590-A-	112590-A-	112590-A-
			104	121	124	126
Your Reference		HA106	HA107	HA115	HA116	HA117
Depth		0.15	0.2	0.2-0.3	0.3-0.4	0.25-0.35
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Naphthalene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.7	8.3	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.3	3.6	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	6.3	68	2.2	0.2	<0.1
Anthracene	mg/kg	1.3	11	0.6	<0.1	<0.1
Fluoranthene	mg/kg	20	220	40	3.4	0.3
Pyrene	mg/kg	19	220	50	3.4	0.3
Benzo(a)anthracene	mg/kg	14	150	61	3.1	0.2
Chrysene	mg/kg	13	130	110	5.8	0.3
Benzo(b+k)fluoranthene	mg/kg	30	290	230	12	0.8
Benzo(a)pyrene	mg/kg	18	180	44	1.7	0.26
Indeno(1,2,3-c,d)pyrene	mg/kg	15	150	44	2.9	0.3
Dibenzo(a,h)anthracene	mg/kg	2.0	16	15	0.7	<0.1
Benzo(g,h,i)perylene	mg/kg	14	130	42	2.9	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	26	260	94	4.0	<0.5
Total +ve PAH's	mg/kg	150	1,600	640	37	2.8
Surrogate p-Terphenyl-d14	%	95	96	98	105	96

Moisture Our Reference:	UNITS	112590-A-99	112590-A-	112590-A-	112590-A-	112590-A-
Your Reference Depth Type of sample		HA106 0.15 Soil	104 HA107 0.2 Soil	121 HA115 0.2-0.3 Soil	124 HA116 0.3-0.4 Soil	126 HA117 0.25-0.35 Soil
Date prepared Date analysed	-	16/07/2014 17/07/2014	16/07/2014 17/07/2014	16/07/2014 17/07/2014	16/07/2014 17/07/2014	16/07/2014 17/07/2014
Moisture	%	6.2	14	7.5	6.3	8.0

Method ID	Methodology Summary
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

		Clie	ent Reference	e: A	S 130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil					SII#	Base II Duplicate II % RPD		Recovery
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-2	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-2	16/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	94%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	89%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	91%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	92%
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	93%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-2	87%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	[NT]	[NT]	LCS-2	98%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p-</i> Terphenyl- d14	%		Org-012 subset	111	[NT]	[NT]	LCS-2	92%

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank
Date prepared	-			16/07/2 014
Date analysed	-			16/07/2 014
Moisture	%	0.1	Inorg-008	[NT]

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

	Furth		2002 WSN			ervices.com.au	Comment	Comments	Provide as much information about the sample as you can		HOLD	(J) OH	LIDI N	HOLD		HOLD			HOLD	HOLN		ent (circle one)	(if applicable)	/ courier Page No:
			Envirolab Services		Fax: 02 9910 6201	ii to							Fautrolah Sarviber	12 Ashley	Ph:	112 590	ved. 4/7/14		p.CooltAmbent ling: dedcepack	niacu hone		Samples Received: Cool or Ambient (circle one)	Temperature Recieved at:	Transported by: Hand delivered / courier Page No:
100	- Client	S				day / 3 day sround is required -	Tests Required						(ENVIROLAB	•	ON DOL	Date Rece	Peceived	Temp: Cod	C pourity:		ELS	513	
CHAIN OF CUSTODY - Client	NVIROLAB SERVICES Client Project Name and Number: AS 130 38 3	PO No.:	Date results required:	Or choose's standard// 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required surcharge apples		Combo 3 5	HUOUIJ HUJ XZL8 HUL HUL	XXXX		XXXX			XXXXX		をまためる	X	X X X X X X		XXXXX	Received by (company):	Print Name:	Signature:		
	EN				Ht Fax:		9	Type of sample													Re			
		1400	KUN HI Greentie	Woods Cub 19R ENGlowed	hon and	Supple Fax:	5		Client Sample ID Sampled		7:	104 0-02	S	90	20	60	0	5.0-0 11	13	H			VIIII 2 W	(Joad)
			Client: ENVI Project Mgr: KIrS	Sampler: Kate Address: 10,10.17	130	(0) 496			Envirolab Sample ID Client (0	01	4 TP 104	101		101	1	10 10	10-10-	13 70 1	AT 12		Netinguished by (company):	4	Signature: WA

2 •

Envirolab		Envirolab Services	12 Ashley St, Chatswood, NSW, 2067		Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail: ahie@envirolabservices.com.au	Contact: Aileen Hie	Comments	Provide as much information about the	sample as you can							HOLD				112 CGC		HOLD		Samples Received: Cool or Ambient (circle one)	Temperature Recieved at: (if applicable)	Transported by: Hand delivered / courier	Page No:
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number:	A3 130 58 5	PO No.:	Envirolab Services Quote No. :	Date results required:	Or choose standard/ 1 day / 2 day / 3 day	wole: uniorm lab in advance it urgent turnaround is required - surcharge applies	Tests Required	дриол — s H	97 19 49												XXXXX		X	(company):	5151	Date & Time: 4/ +/14 12.00	Signature:
CHAIN	14 III III 004		VI 10 M ALENTIPIO	K Would	evel 2, suite 198, so gleber	re Junction	Egreenheid a CNN UN Cap. Com	Phone: (02) 49625444 Fax:	Sample information	Envirolab Client Sample ID Date Type of sample Sampled		16 TP116 0.1-0.3	5	18 WH	124	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4-0-0	23 70 122	24 TP (23	25 70124	26 IP (25	07 12 20	1212	2C-044		L L	2000 JULL C	1-1- 1-1- 1-1- 1-1-1-1-1-1-1-1-1-1-1-1-	C C C C C C C C C C C C C C C C C C C

Fundah	ADIA ITAIT	Envirolab Services		910 6200	02 9910 6201	E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie		Comments	Provide as much information about the	sample as you can				CIUT					HOLD	HOLD		12.590	HOLD	570-7	Samples Received: Cool or Ambient (circle one)	ccieved at: (if applicable)	Transported by: Hand delivered / courier	Page No:
		Envirolab Services		Phone: 02 9910 6200	Fax: 02 9	E-mail: ahie@envir Contact: Aileen Hie																			Samples Receiv	Temperature Recieved at:	Transported by:	
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 1/30 38 3	PO No.:	50 4 16 be Referrited Services Quote No. :	Date results required:	Or choose: standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharge applies	Tests Required	ママ	Hi Hi Hz Ho	W S S S S S S S S S S S S S S S S S S S								X X X X X				XXXXXX			(company):	183	Date & Time: 11/7/14 12-00	Signature:
CHAIN	V 4 11 11 10 00 11	Project Mgr: KITSHA & reentield	te Moods	Level 2 , Suite 198	10 200 - 200	(0) 4625444 Fax:	Sample information		Envirolab Client Sample ID Date Type of sample Sample ID Sampled		31 TP128-02	32 TP128 -0.4	F10129	24 TP129 0.6-0-1	S WH IA	23 -0.50 0-0.5	ST 17(50 ()-0-01	1-0151	0.0-01 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	MI TP 132 0.1	132 0	45 TP 132 0.4	AS TO 122 C. C.D.	Belineitiched hu formand	Print Name. Korte 1. 1000	12000 J	Signature: V. Dark	

Envirolah	TIINIC OLD	od, NSW, 2067			bservices.com.au	Comments	Provide as much information about the sample as you can			A DOL	0002	HOLD	HOLD	HOLD	HOLY		Tord	HOLD	N ION	nbient (circle one)	(if applicable)	red / courier	Page No:
		Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	Phone: 02 9910 6200	Fax: 02 9910 6201	c-indii: anie@envirolabservices.com.au Contact: Aileen Hie															Samples Received: Cool or Ambient (circle one)	Temperature Recieved at:	Transported by: Hand delivered / courier	
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 130383 Po No.:		Date results required: Or choose: standard/ 1 day / 2 day	Note: Inform lab in advance if urgent turnaround is required - surcharge applies	Com bo 3 Tests Required	HUD HUD HUD HUD HUD Shapen S													Received by (company):	1813	Date & lime: $q/f/(4/2.00)$	X
CHAIN	V 11 11 10 00 1	ENVIRUN 11: KISH Greentis Kake Woods	Address: Level 2, Swite 198, 50 Gleberg	Email: Kgreenfield Q CNNONCON-CON	Phone: (02) 49625444 Fax:	Sample information	Envirolab Client Sample ID Date Type of sample Sample ID Sampled	46 TP133 0.1-0.2	47 TP 133 0-4	4	00 TO 134 0.2	2 N N	M	53 TP 135 0-15	1 M	26 11P 136 0.1	<u>58 110 136 0.4</u>	59 - 0 - 0 - 2	Palimited In (5 + Durgack)	Print Name: 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120	Wadty	

•

.

Futbolch	TILA IL AIGH	d, NSW, 2067			services.com.au	Comments	Provide as much information about the sample as you can		HOLD		AOUN	HOLD	HOLD	HOLD	4000	HOLD	X OF	12590	HOLD	bient (circle one)	(if applicable) id / courier	Page No:
		Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail: ahie@envirolabservices.com.au															Samples Received: Cool or Ambient (circle one)	Temperature Recieved at: (if app Transported by: Hand delivered / courier	
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 130 38 3 DO NO -	50 Glebe Rd Envirolab Services Quote No.:	Date results required:	Or choose: standard/ 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharge apples	Combo 3	BELAN AHA AAL AAL STOJANS													(company):	Print Name: USIS Date & Time: 4/7/14/2.00 Sionature:	
CHAIN		Client: ENVIRON Project Mgr: KITSHA GIRPENTIO O Sampler: Kate MOOOK	Level 2, Suite 198	re Junction	Phone: (0) 49625444 Fax:		Envirolab Client Sample ID Date Type of sample Sample ID Sampled	61 TP137 0.1	62 TP 137 0-2	121	64 12 158 Jurface	(38 0	63 TP138 0.4	12	91	32 HP 159 0.4		35 40160 0-1	1	Print Name: Kar He Is hoods	: 12 0 0 2/7/14	

* • •

۰.

Carlo Carlo		Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	Phone: 02 9910 6200	Fax: 02 9910 6201 E-mail: ahie@envirolaheenvices.com au	Contact: Aileen Hie	Comments	Provide as much information about the sample as you can			HOLD				HOLD		HOLD	Hor D		Samulas Danaivad. Cool or Ambiant Lited.	Temperature Recieved at: (if annicatio)	Transported by: Hand delivered /	Page No:	
CHAIN OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 130383 PO No.:	Envirolab Services Quote No. :	Date results required: Or chooses standard/ 1 day / 2 day / 3 day	Note: Inform lab in advance if urgent tumaround is required - surcharge applies	Tests Required	SH 49												Received by (company):	Print Name: USB	Date & Time: 4 / 7 / 14 / 2 - 00	Signature:	
CHAIN (Client: ENVIRON Project Mgr: KIrstha Greenield Sampter: Kase Moods	Address: Level 2, Suile 198, 50 Glebe Rd Envirolab Services Quote No.:	Email: Kgreenfield a churon corp. com		Sample information	Envirolab Client Sample ID Date Type of sample Client Sample ID Date Type of sample A	ho Ohide 9	21 Suctace	0 10+010-12	Zeurface	2	83 HH 102 0.15	20	030	05 1102 0-15	29 HA TOT Suchace	() HA 104	1 by (company):	Kate Noods	11+1- 1-1 1-1 +11+		

•

• •

112590

Fundada	TINICOLOGI	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	Phone: 02 0010 6200	c: 02 9910 6201	E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie	Commente	Provide as much information about the sample as you can		Rock			HOLD		HOLD	HOLD	HOLD	HOLD	HOLD	HOLD		Samples Received: Cool or Ambient (circle one)	Temperature Recieved at: (if applicable)	Transported by: Hand delivered / courier	Page No:
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 130 38 3 12	b Services Quote No. :		Or choose (standard) 1 day / 2 day / 3 day Note: Inform lab in advance if urgent tumaround is required - Surcharge applies CO	Tests Required	SHHC SHHC			X				X	38						(company): HLS	0000	00:71 11 12 12	winacure.
CHAIN		Project Mgr: KINSTA GREENFIELD Sampler: Kate Jubook	Level 2, Suite 198	Email: Lanchion	(0) 49625444 Fax:	Sample information	Envirolab Client Sample ID Date Type of sample Sampled	91 HIPIOL DIC	92 HAIOY D.2	M.	J	C. Solah 2	140	et et		101 414 100 0.4	107	1011	1.0 10 101 101	wmpany):	Introde	:120 a 2/7/14	Signature: Unot	

. .

.

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

DP2211

Entrelah	TIMII NIGN	Envirolab Services		Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail: ahie@envirolabservices.com.au	contact: Alleen Hie	Comments	Provide as much information about the sample as you can		HOLD								(JOH)	-			HOLD		Samples Received: Cool or Ambient (circle one)	Temperature Recieved at: (if applicable)	Iransported by: Hand delivered / courier	Page No:
OF CUSTODY - Client	ENVIROLAB SERVICES	Client Project Name and Number: AS 1/30 38 3		Envirolab Services Quote No. : p		Fax:		Tests Required	SHtra Janjo							X	X								Company): CO	12 000	10000	
CHAIN	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Project Mgr: KISHA & reentield	te Moods	vel 2, Suite 198, 50 Gleberd	J.	(0) 496254444 Fax:	Samula information		Envirolab Client Sample ID Date Type of sample Sampled Type of sample	10% HAIOS 0.3-0.4		00	NSA HA 110 0-0-1	10 HB110 0.3-0-4	1.0-0 111 HH 111	2	113 HAILI 0-3-0.4	12 0	112 40412 0-3-0-4	112 0.	E	14 0		Relinquished by (company):	Inloods	12 PM 217114	Signature: KinkbodS	

•

. .• . Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

ŧ

234			
La For	ENVIROLAB SERVICES	SERVICES	
Late	Client Project Name and Number: AS 130 38 3	e and Number: 383	Envirolab Services
Address: Level 2, Suche 198, 50 Gleber		Quote No. :	Phone: 02 9910 6200
ne Jun		ed:	Fax: 02 9910 6201
Email: Kgrentield a CNNrDN Cap. CON	CT.	Or choose: standard/ 1 day / 2 day / 3 day	E-mail: ahie@envirolabservices.com.au
Phone: (02) 49625444 Fax:	Note: Inform lab in advan surcharge applies	Note: Inform lab in 30v ance if urgent turnaround is required - surcharge applies	Contact: Aileen Hie
Sample information		Tests Required	Comments
Envirolab Client Sample ID Date Type	Type of sample		Provide as much information about the sample as you can
121 HAUS 0-2-0-3	2		
122 HAILO 0-0.1	XX		HOUD
9]			HOLD
1.0-5-0 9114H 1-2 -1			HOUD
	XX		
2-0-22-0 1101 211			HOUD
0	XX		HOLD
9 RAUG	XX		
O HAU90	XX		
	XX		
22 HALOO 0-2-0-4			(INCI)
37			
HA122	××		(JUCI)
Relinquished by (company):	Received by (company):	invi: ELS	Commiss Brackers, Contraction of the second
Print Name: Kate NOOOS	Print Name:	1813	Temperature Received at: 75
Date & Time: 12 PM 12/7/14	Date & Time:	417/14 12-00	Transported by: Hand delivered / courier
Signature: M. IA (DOOY)	Signature:	10	-on and

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

$\frac{1}{2/14}$ Received by (company): EUS Samples Received: Cool or Ambient $\frac{1}{2/14}$ Temperature Recieved at: $\frac{1}{2/2}$ Transported by: Hand delivered / C	Fax: Date Type of sample	ZON Clent Project Name and Number: Mood/ Nood/ Suite (9 B, 50 G/E/E/R/ Internation PO No.: Suite (9 B, 50 G/E/E/R/ E/R/ Date results required: Date results required: Date results required: Sample to sample	Envirolab Services Envirolab Services 12 Ashley St, Chatswood, NSW, 2067 Phone: 02 9910 6200 Fax: 02 9910 6201 E-mail: ahie@envirolabservices.com.au Contact: Aileen Hie comments Contact: Aileen Hie comments Provide as much information about the sample as you can HOUD
$\frac{\mathcal{EU}}{\mathcal{L}/\mathcal{I}/\mathcal{I}} = \frac{\text{Received by (company):}}{\frac{\mathcal{EU}}{\mathcal{L}/\mathcal{I}/\mathcal{I}}} = \frac{\mathcal{EU}}{\text{Print Name:}} = \frac{\mathcal{EU}}{\mathcal{L}/\mathcal{I}/\mathcal{I}} = \frac{\mathcal{EU}}{\text{Temperature Received: Cool or Ambient}}$	b-0-E-		HOLD
$\frac{1}{\sqrt{2}/3}$ Temperature Recieved at: $\frac{1}{\sqrt{2}/3}$ Temperature Recieved at: $\frac{1}{\sqrt{2}/3}$ Transported by: Hand delivered / c	/	company): EUS	Samples Received: Cool or Amhiant (circle one)
he: $\frac{1}{4/7/14}$ 12.00 Transported by: Hand delivered / c	Spadiv	1512	Temples Received: Cool or Ambient (circle one)
	n2/2/114 Date & Time:	12	
100	and Cinnetine.	-	T
Signature: Signature:	Signature:	2	Land More

. .

.

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

((Env)rolab	Envirolab Services 12 Ashley St, Chatswood, NSW, 2067	Phone: 02 9910 6200 Fax: 02 9910 6201 E-mail: ahie@envirolabservices.com.au	Commante	Provide as much information about the sample as you can		CITOH				r Ambient (circle one)	· (IT applicable) livered / courier	Page No:
		Envirolab Services 12 Ashley St, Chatswo	Phone: 02 9910 6200 Fax: 02 9910 6201 E-mail: ahie@envirol	Contact: Aileen Hie							Samples Received: Cool or Ambient (circle one) Temperature Decision of	Transported by: Hand delivered / courier	
CHAIN OF CLISTODY - CLIDER	ENVIROLAB SERVICES	Client Project Name and Number: AS 130 38 3			Huorid Anorid XEIEX HUL Smeton					Received by (rommanu).	1813	Date & Time: 4/7/14 12、00 T Signature:	X
		Client: ENVIRON Project Mgr: KITSHA A 12 PM 10 1 Sampter: Late WoodS	Address: Level 2, Suite 198, 50 Gleberal The Junction Email: Kgrenfield a) envroncorp.com Phone: (02) 196254444 Fax:	Sample information	Envirolab Client Sample ID Date sampled	101 101 101 121				Relinquished by (company):	Date & Time: /2 / 0/00/S	Signature: Un book	

.

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

112590

Client: Environ (Newcastle) Suite 19B, Level 2 50 Glebe Rd The Junction NSW 2291

Attention: Kate Woods, Kirsty Greenfield

Sample log in details:

Your Reference:	AS 130383		
No. of samples:	152 Soils		
Date samples received / completed instructions received	4/7/2014	/	4/7/2014

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:			
Date results requested by: / Issue Date:	11/07/14	/	11/07/14
Date of Preliminary Report:	Not Issued		
NATA accreditation number 2901. This document sha	II not be reproduced e	except i	n full.
Accredited for compliance with ISO/IEC 17025.	Tests not covered b	y NAT	A are denoted with *.

Results Approved By:

Jacinta Hurst

Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	86	100	100	96	98

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	88	108	100	91

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	96	97	96	95
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	94	94	97	96

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	94	94	99	95	98
5						
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	96	100	97	96

			_	-		-
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	92	90	94	93
		1	T	I	1	-
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152	
Your Reference		TP138	TP139	TP140	TP116	
Depth		0.2	0.1	0.1	0.5-0.7	
T ()	1	0 1	0 1	0 1	0 1	1

Your Reference		TP138	TP139	TP140	TP116
Depth		0.2	0.1	0.1	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25
vTPHC6 - C10 lessBTEX(F1)	mg/kg	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	95	93	92	91

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

AS 130383

svTRH (C10-C40) in Soil Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference	UNITS	TP101	TP104	TP107	TP111	TP113
Depth		IFIUI	0-0.2	IF107	0-0.3	IFIIS
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	96	96	96	96	96
svTRH (C10-C40) in Soil Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference	UNITS	TP115	TP116	TP117	QA1	TP118
Depth		TETIS	0.1-0.3	IFIII	QAT	IFIIO
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	_	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
		-00	-00			-00

<100

<100

<50

<50

<100

<100

92

<100

<100

<50

<50

<100

<100

92

3,200

2,200

<50

<50

5,100

1,000

107

<100

<100

<50

<50

<100

<100

97

<100

<100

<50

<50

<100

<100

92

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	120	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	61	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	61	<50
TRH>C16-C34	mg/kg	<100	<100	<100	150	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	95	96	93	96	88

TRHC 15 - C28

TRHC 29 - C36

TRH>C10-C16

TRH>C10 - C16 less Naphthalene

TRH>C16-C34

TRH>C34-C40

Surrogate o-Terphenyl

(F2)

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	08/07/2014	08/07/2014	08/07/2014
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	95	91	89	95
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/201
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C 36	mg/kg	<100	<100	<100	<100	<100
TRH>C 10-C 16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	111	92	94	92
svTRH (C10-C40) in Soil						

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	120	<100	<100
Surrogate o-Terphenyl	%	90	92	93	93	91

AS 130383

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	540	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	590	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	97	109	#	92
				1		-
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152	
Your Reference		TP138	TP139	TP140	TP116	
Depth		0.2	0.1	0.1	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	1

07/07/2014

<50

<100

<100

<50

<50

<100

<100

92

-

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

07/07/2014

<50

<100

<100

<50

<50

<100

<100

96

07/07/2014

<50

<100

<100

<50

<50

<100

<100

92

08/07/2014

<50

<100

<100

<50

<50

<100

<100

91

Date analysed

TRHC 10 - C 14

TRHC 15 - C28

TRHC 29 - C36

TRH>C10-C16

TRH>C10 - C16 less Naphthalene

TRH>C16-C34

TRH>C34-C40

Surrogate o-Terphenyl

(F2)

PAHs in Soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	0.2	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.07	0.12	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.35	0.69	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	101	102	102	104	103
PAHs in Soil						
---------------------------	-------	-----------	-----------	-----------	-----------	-----------
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	1.6	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	7.6	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	2.5	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	130	<0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	33	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	390	<0.1	0.5
Pyrene	mg/kg	<0.1	<0.1	380	<0.1	0.4
Benzo(a)anthracene	mg/kg	<0.1	<0.1	180	<0.1	0.2
Chrysene	mg/kg	<0.1	<0.1	170	<0.1	0.2
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	320	<0.2	0.4
Benzo(a)pyrene	mg/kg	<0.05	<0.05	220	<0.05	0.23
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	120	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	26	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	120	<0.1	0.2
Benzo(a)pyrene TEQNEPMB1	mg/kg	<0.5	<0.5	310	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	2,100	NIL(+)VE	2.5
Surrogate p-Terphenyl-d14	%	96	98	110	110	100

PAHs in Soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	0.1	0.2	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.5	0.2	0.5	0.7	0.1
Pyrene	mg/kg	0.5	0.2	0.5	0.7	<0.1
Benzo(a)anthracene	mg/kg	0.4	0.1	0.3	0.4	<0.1
Chrysene	mg/kg	0.4	0.1	0.4	0.4	<0.1
Benzo(b+k)fluoranthene	mg/kg	1.2	0.2	0.8	1	<0.2
Benzo(a)pyrene	mg/kg	0.58	0.13	0.47	0.56	0.06
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.1	0.4	0.5	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.4	0.1	0.4	0.4	<0.1
Benzo(a)pyrene TEQNEPMB1	mg/kg	1.0	<0.5	1.0	1.0	<0.5
Total +ve PAH's	mg/kg	4.8	1.0	4.0	4.8	0.18
Surrogate p-Terphenyl-d14	%	102	104	100	99	96

PAHs in Soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	7/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	0.2	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.4	0.4	0.6	<0.1	<0.1
Pyrene	mg/kg	0.4	0.4	0.5	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.3	0.2	0.2	<0.1	<0.1
Chrysene	mg/kg	0.3	0.2	0.2	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	0.8	0.4	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.41	0.21	0.17	0.08	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.4	0.2	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	0.1	0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	1.0	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	3.5	2.3	2.2	0.080	NIL(+)VE
Surrogate p-Terphenyl-d14	%	100	103	99	97	104

PAHs in Soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.2	0.3	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1	0.5	1.0	<0.1	0.2
Pyrene	mg/kg	0.9	0.4	1	<0.1	0.1
Benzo(a)anthracene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Chrysene	mg/kg	0.5	0.2	0.6	<0.1	0.1
Benzo(b+k)fluoranthene	mg/kg	1.1	0.5	1.0	<0.2	0.2
Benzo(a)pyrene	mg/kg	0.64	0.23	0.56	<0.05	0.11
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	0.2	0.4	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	1.0	<0.5	1.0	<0.5	<0.5
Total +ve PAH's	mg/kg	6.2	2.6	5.7	NIL(+)VE	0.76
Surrogate p-Terphenyl-d14	%	100	97	100	100	99

PAHs in Soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	0.3	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.06	<0.05	0.11	<0.05	0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	0.060	0.13	0.84	NIL(+)VE	0.05
Surrogate p-Terphenyl-d14	%	97	101	101	101	99

PAHs in Soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.08	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQNEPMB1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.18	NIL(+)VE
Surrogate p-Terphenyl-d14	%	104	107	120	111	101

PAHs in Soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-98	112590-102
Your Reference		TP138	TP139	TP140	HA106	HA107
Depth		0.2	0.1	0.1	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	0.4	<0.1	<0.1	1.0
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.6
Acenaphthene	mg/kg	<0.1	0.6	<0.1	0.6	4.3
Fluorene	mg/kg	<0.1	0.6	<0.1	0.3	2.6
Phenanthrene	mg/kg	<0.1	2.3	<0.1	5.5	24
Anthracene	mg/kg	<0.1	0.3	<0.1	1.2	5.7
Fluoranthene	mg/kg	<0.1	3.8	<0.1	19	76
Pyrene	mg/kg	<0.1	3.4	<0.1	19	72
Benzo(a)anthracene	mg/kg	<0.1	2.4	<0.1	18	70
Chrysene	mg/kg	<0.1	2.7	<0.1	19	70
Benzo(b+k)fluoranthene	mg/kg	<0.2	5.6	<0.2	46	170
Benzo(a)pyrene	mg/kg	<0.05	2.9	<0.05	25	98
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	2.1	<0.1	19	63
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.3	<0.1	2.7	15
Benzo(g,h,i)perylene	mg/kg	<0.1	1.9	<0.1	18	59
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	4.0	<0.5	36	140
Total +ve PAH's	mg/kg	NIL(+)VE	29	NIL(+)VE	190	730
Surrogate p-Terphenyl-d14	%	101	116	105	105	103

PAHs in Soil						
Our Reference:	UNITS	112590-105	112590-107	112590-108	112590-109	112590-110
Your Reference		HA108	HA109	HA109	HA110	HA110
Depth		0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.4	0.4	0.2	1.5	0.1
Fluorene	mg/kg	0.2	0.2	<0.1	1.0	<0.1
Phenanthrene	mg/kg	3.5	3.4	1.5	15	1.8
Anthracene	mg/kg	0.8	0.9	0.4	3.8	0.5
Fluoranthene	mg/kg	12	11	4.5	43	7.8
Pyrene	mg/kg	12	10	4.5	40	7.8
Benzo(a)anthracene	mg/kg	9.0	10	2.6	40	5.5
Chrysene	mg/kg	9.3	10	2.5	41	5.5
Benzo(b+k)fluoranthene	mg/kg	22	25	5.6	96	13
Benzo(a)pyrene	mg/kg	13	14	3.7	55	8.1
Indeno(1,2,3-c,d)pyrene	mg/kg	9.1	10	2.4	41	5.8
Dibenzo(a,h)anthracene	mg/kg	0.9	1.7	0.3	9.4	0.7
Benzo(g,h,i)perylene	mg/kg	8.9	9.7	2.3	37	5.5
Benzo(a)pyrene TEQ NEPM B1	mg/kg	18	21	5.0	82	11
Total +ve PAH's	mg/kg	100	110	30	420	63
Surrogate p-Terphenyl-d14	%	100	108	102	105	101

PAHs in Soil						
Our Reference:	UNITS	112590-111	112590-112	112590-113	112590-114	112590-116
Your Reference		HA111	QA3a	HA111	HA112	HA113
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	1.2	0.2	1.1	0.2	<0.1
Fluorene	mg/kg	0.8	0.1	0.4	0.1	<0.1
Phenanthrene	mg/kg	12	3.1	12	2.4	2.7
Anthracene	mg/kg	3.1	0.8	3.7	0.6	0.7
Fluoranthene	mg/kg	37	14	46	9.3	15
Pyrene	mg/kg	35	14	46	9.0	14
Benzo(a)anthracene	mg/kg	36	8.3	34	9.3	9.5
Chrysene	mg/kg	37	8.2	34	9.8	12
Benzo(b+k)fluoranthene	mg/kg	86	20	76	25	28
Benzo(a)pyrene	mg/kg	50	13	47	14	8.6
Indeno(1,2,3-c,d)pyrene	mg/kg	38	10	36	10	7.4
Dibenzo(a,h)anthracene	mg/kg	8.4	1.0	4.4	1.4	1.4
Benzo(g,h,i)perylene	mg/kg	33	9.4	32	9.2	7.5
Benzo(a)pyrene TEQNEPMB1	mg/kg	75	18	67	20	15
Total +ve PAH's	mg/kg	380	100	370	100	110
Surrogate p-Terphenyl-d14	%	99	106	100	101	102

PAHs in Soil						
Our Reference:	UNITS	112590-117	112590-118	112590-120	112590-122	112590-125
Your Reference		HA113	HA114	HA115	HA116	HA117
Depth		0.3-0.4	0-0.1	0-0.1	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.9	0.4	16	4.2	4.0
Anthracene	mg/kg	0.3	<0.1	3.5	0.8	1.3
Fluoranthene	mg/kg	3.2	3.1	210	41	38
Pyrene	mg/kg	3.1	3.0	240	41	38
Benzo(a)anthracene	mg/kg	1.5	4.4	300	57	52
Chrysene	mg/kg	1.6	8.1	490	110	110
Benzo(b+k)fluoranthene	mg/kg	3.6	18	990	240	300
Benzo(a)pyrene	mg/kg	1.9	3.7	230	42	47
Indeno(1,2,3-c,d)pyrene	mg/kg	1.3	3.1	190	48	76
Dibenzo(a,h)anthracene	mg/kg	0.2	0.8	60	12	25
Benzo(g,h,i)perylene	mg/kg	1.2	3.3	190	53	81
Benzo(a)pyrene TEQ NEPM B1	mg/kg	3.0	7.0	440	90	120
Total +ve PAH's	mg/kg	19	47	2,900	640	770
Surrogate p-Terphenyl-d14	%	98	99	120	120	104

PAHs in Soil						
Our Reference:	UNITS	112590-128	112590-129	112590-130	112590-131	112590-133
Your Reference		HA119	QA4a	HA119	HA120	HA121
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.9	<0.1	0.1	<0.1	<0.1
Fluorene	mg/kg	0.5	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	5.6	0.9	1.5	1.4	0.1
Anthracene	mg/kg	1.0	0.2	0.4	0.4	<0.1
Fluoranthene	mg/kg	17	3.4	5.8	12	1.2
Pyrene	mg/kg	16	3.4	5.6	11	1.2
Benzo(a)anthracene	mg/kg	16	2.3	3.2	14	1.5
Chrysene	mg/kg	21	2.9	3.3	26	2.8
Benzo(b+k)fluoranthene	mg/kg	53	7.0	7.4	69	7.4
Benzo(a)pyrene	mg/kg	19	2.8	4.3	12	1.4
Indeno(1,2,3-c,d)pyrene	mg/kg	17	2.4	3.1	20	2.2
Dibenzo(a,h)anthracene	mg/kg	3.0	0.3	0.3	4.9	0.5
Benzo(g,h,i)perylene	mg/kg	16	2.3	2.9	21	2.4
Benzo(a)pyrene TEQ NEPM B1	mg/kg	31	4.0	6.0	28	3.0
Total +ve PAH's	mg/kg	190	28	38	190	21
Surrogate p-Terphenyl-d14	%	102	102	102	102	102

PAHs in Soil					
Our Reference:	UNITS	112590-135	112590-136	112590-137	112590-152
Your Reference		HA122	HA122	QA5a	TP116
Depth		0-0.1	0.3-0.4	-	0.5-0.7
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	7/07/2014	7/07/2014	7/07/2014	7/07/2014
Date analysed	-	8/07/2014	8/07/2014	8/07/2014	8/07/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	0.7	0.9	<0.1
Anthracene	mg/kg	<0.1	0.2	0.2	<0.1
Fluoranthene	mg/kg	2.4	2.6	3.5	<0.1
Pyrene	mg/kg	2.3	2.5	3.4	<0.1
Benzo(a)anthracene	mg/kg	2.4	1.4	2.0	<0.1
Chrysene	mg/kg	4.2	1.7	2.4	<0.1
Benzo(b+k)fluoranthene	mg/kg	8.8	3.8	5.3	<0.2
Benzo(a)pyrene	mg/kg	2.2	1.7	2.6	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	2.1	1.2	1.8	<0.1
Dibenzo(a,h)anthracene	mg/kg	0.4	0.2	0.2	<0.1
Benzo(g,h,i)perylene	mg/kg	2.1	1.3	1.8	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	4.0	3.0	4.0	<0.5
Total +ve PAH's	mg/kg	27	17	24	NIL(+)VE
Surrogate p-Terphenyl-d14	%	95	77	103	100

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	12	<1	23	17
Copper	mg/kg	2	2	<1	2	<1
Lead	mg/kg	5	10	1	12	24
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	8	5	1	6	3
Zinc	mg/kg	32	36	3	35	5
Acid Extractable metals in soil						
Acid Extractable metals in soil						

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	63	<4	<4	<4
Cadmium	mg/kg	<0.4	0.5	<0.4	<0.4	<0.4
Chromium	mg/kg	11	12	11	12	5
Copper	mg/kg	<1	590	17	<1	4
Lead	mg/kg	4	1,600	23	5	7
Mercury	mg/kg	<0.1	<0.1	0.2	<0.1	<0.1
Nickel	mg/kg	1	5	18	1	6
Zinc	mg/kg	2	5,600	51	2	41

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	3	5	7	7
Copper	mg/kg	3	2	1	2	3
Lead	mg/kg	8	18	6	9	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	4	4	3	7	5
Zinc	mg/kg	20	22	14	26	12

Client Bof

45 130383

	Client Refere	nce: AS 1	30383			
Acid Extractable metals in soil Our Reference: Your Reference Depth	UNITS	112590-26 TP125	112590-27 TP126	112590-28 TP127	112590-30 TP128 0.1	112590-31 TP128 0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	<4	<4	30	6
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	7	5	6	17	8
Copper	mg/kg	2	5	3	94	12
Lead	mg/kg	8	6	6	120	8
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	4	4	18	14
Zinc	mg/kg	57	23	13	510	48
· · · -						
Acid Extractable metals in soil Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference	01113	TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	6	20	<4	<4	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	4.3
Chromium	mg/kg	15	15	9	29	29
Copper	mg/kg	8	11	12	1	48
Lead	mg/kg	9	9	11	8	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	47	65	54	8	130
Zinc	mg/kg	47	50	86	15	240
	ing/kg	1	50	00	10	240
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014

Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	20	<4	8	7	9
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.4	0.6
Chromium	mg/kg	33	15	11	10	19
Copper	mg/kg	44	2	22	28	140
Lead	mg/kg	13	10	21	47	38
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	27	3	16	21	17
Zinc	mg/kg	130	8	140	220	210

Acid Extractable metals in soil						
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	6	6	10	<4	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	6	8	20	18
Copper	mg/kg	12	10	13	24	<1
Lead	mg/kg	16	7	8	29	17
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	6	10	13	12	4
Zinc	mg/kg	47	42	41	76	22
Acid Extractable metals in soil						
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-152	112590-153
Your Reference		TP138	TP139	TP140	TP116	TP135-
						TRIPLICATE
Depth		0.2	0.1	0.1	0.5-0.7	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Arsenic	mg/kg	<4	4	<4	100	5
Cadmium	mg/kg	<0.4	<0.4	<0.4	0.5	<0.4
Chromium	mg/kg	7	17	7	20	13
Copper	mg/kg	<1	26	1	580	12
Lead	mg/kg	8	33	13	1,800	23
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	15	5	6	7
Zinc	mg/kg	41	280	7	6,000	81

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
		IFIUI	0-0.2	IF IU/	0-0.3	IFIIS
Depth Type of sample		- Soil		- Soil		- Soil
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	45	16	19	22	<0.5
Missellen som besom soll		1	1			
Miscellaneous Inorg - soil		110500 15	110500 10	110500 17	110500 10	440500.40
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	2.1	31	340	1.6	22
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference	UNITS	TP119	TP120	TP122	TP123	TP124
		IPTI9	119120	119122	11123	11/124
Depth Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	28	17	26	23	17
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	malka	27	15	19	220	800
	mg/kg	21	10	19	220	800
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	ma/ka	200	1,098	1,463	120	87
i luonue (1.3 Soll.waler)	mg/kg	200	1,090	1,403	120	01

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	58	0.9	1.1	110	110
			T			
Miscellaneous Inorg - soil			110500 50	440500 50	440500.04	440500.00
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	4.6	13	6.0	2.2	7.0
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-66	112500 70	112500 74	112500 77	110500 70
Your Reference	UNITS	TP138	112590-70 TP139	112590-74 TP140	112590-77 HA101	112590-78 HA101
				_	_	
Depth		0.2	0.1	0.1	Surface	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	5.5	79	50	28	180
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-80	112590-81	112590-82	112590-83	112590-8
Your Reference		HA101	HA102	HA102	HA102	HA103
Depth		0.2	Surface	0.1	0.15	Surface
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/201
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	62	53	78	120	140
Miscellaneous Inorg - soil						
Misselianceas morg son		112590-86	112590-89	112590-90	112590-93	112590-94
Our Reference:	UNITS	112000 00	1			HA105
	UNITS	HA103	HA104	HA104	HA105	11/100
Our Reference:	UNITS 		HA104 Surface	HA104 0.1	HA105 Surface	0.1
Our Reference: Your Reference	UNITS 	HA103				
Our Reference: Your Reference Depth	UNITS 	HA103 0.1	Surface	0.1	Surface	0.1 Soil
Our Reference: Your Reference Depth Type of sample		HA103 0.1 Soil	Surface Soil	0.1 Soil	Surface Soil	0.1

Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-96	112590-116	112590-117	112590-118	112590-12
Your Reference		HA105	HA113	HA113	HA114	HA115
Depth		0.2	0-0.1	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	67	40	130	29	7.9
					1	
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-122	112590-125	112590-128	112590-129	112590-13
Your Reference		HA116	HA117	HA119	QA4a	HA119
Depth		0-0.1	0-0.1	0-0.1	-	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/201
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/201
Fluoride (1:5 soil:water)	mg/kg	28	13	76	130	130
						-
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-131	112590-133	112590-135	112590-136	112590-13
Your Reference		HA120	HA121	HA122	HA122	QA5a
Depth		0-0.1	0-0.1	0-0.1	0.3-0.4	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/201
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/201
Fluoride (1:5 soil:water)	mg/kg	13	17	39	68	74
Miscellaneous Inorg - soil						
Our Reference:	UNITS	112590-138	112590-139	112590-140	112590-141	112590-14
Your Reference	01113	HA123	HA123	HA123	HA124	HA124
		Surface	0.1	0.2	Surface	0.1
Depth						0.1 Soil
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/201
Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/201
Fluoride (1:5 soil:water)	mg/kg	29	62	81	170	110
Miscellaneous Inorg - soil						Г
Our Reference:	UNITS	112590-145	112590-146	112590-147	112590-152	
Your Reference		HA125	HA125	HA125	TP116	
Depth		Surface	0.1	0.15	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared		07/07/2014	07/07/2014	07/07/2014	07/07/2014	1
Date prepared Date analysed	-	10/07/2014	10/07/2014	10/07/2014	10/07/2014	
	-					
Fluoride (1:5 soil:water)	mg/kg	37	41	75	37	1

Moisture						
Our Reference:	UNITS	112590-1	112590-4	112590-7	112590-11	112590-13
Your Reference		TP101	TP104	TP107	TP111	TP113
Depth		-	0-0.2	-	0-0.3	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	11	11	13	17
	-					
Moisture						
Our Reference:	UNITS	112590-15	112590-16	112590-17	112590-18	112590-19
Your Reference		TP115	TP116	TP117	QA1	TP118
Depth		-	0.1-0.3	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	16	19	17	16	12
	-	I	1			
Moisture						
Our Reference:	UNITS	112590-20	112590-21	112590-23	112590-24	112590-25
Your Reference		TP119	TP120	TP122	TP123	TP124
Depth		-	-	-	-	-
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	10	9.6	12	15	11
		1	1			
Moisture						
Our Reference:	UNITS	112590-26	112590-27	112590-28	112590-30	112590-31
Your Reference		TP125	TP126	TP127	TP128	TP128
Depth		-	-	-	0.1	0.2
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	6.4	11	8.4	2.6
Moisture						
Our Reference:	UNITS	112590-33	112590-35	112590-36	112590-37	112590-38
Your Reference		TP129	QA1a	TP130	TP130	TP131
Depth		0-0.3	-	0-0.3	0.6-0.7	0.1-0.3
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
	%	12	11	4.3	15	5.9
Moisture		14	11	4.5	15	5.9

					1	[
Moisture						
Our Reference:	UNITS	112590-41	112590-43	112590-46	112590-49	112590-52
Your Reference		TP132	TP132	TP133	TP134	TP135
Depth		0.1	0.4	0.1-0.2	0.2	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	5.1	15	6.6	3.7	7.0
		1				
Moisture			440500 50	110500 50	440500.04	440500.00
Our Reference:	UNITS	112590-55	112590-56	112590-59	112590-61	112590-63
Your Reference		TP135	TP136	QA2a	TP137	TP137
Depth		0.4	0.1	-	0.1	0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	20	4.4	5.7	3.6	22
Malation						
Moisture		440500.00	440500 70	110500 74	110500.00	440500 400
Our Reference:	UNITS	112590-66	112590-70	112590-74	112590-98	112590-102
Your Reference		TP138	TP139	TP140	HA106	HA107
Depth		0.2	0.1	0.1	0.1	0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	8.4	17	10	12	22
Moisture						
Our Reference:	UNITS	112590-105	112590-107	112590-108	112590-109	112590-110
Your Reference	01110	HA108	HA109	HA109	HA110	HA110
Depth		0-0.1	0-0.1	0.3-0.4	0-0.1	0.3-0.4
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	18	23	15	24	29
Moisture						
Our Reference:	UNITS	112590-111	112590-112	112590-113	112590-114	112590-116
Your Reference		HA111	QA3a	HA111	HA112	HA113
Depth		0-0.1	QASa	0.3-0.4	0-0.1	0-0.1
Type of sample		0-0.1 Soil	Soil	0.3-0.4 Soil	Soil	0-0.1 Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed Moisture	-	08/07/2014 25	08/07/2014 21	08/07/2014	08/07/2014 15	08/07/2014 8.9
	%			15		

Moisture						
Our Reference:	UNITS	112590-117	112590-118	112590-120	112590-122	112590-125
Your Reference	00013	HA113	HA114	HA115	HA116	HA117
Depth		0.3-0.4	0-0.1	0-0.1	0-0.1	0-0.1
Type of sample		0.3-0.4 Soil	Soil	Soil	Soil	Soil
		301	301	301	301	3011
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	12	7.9	10	12	19
			[
Moisture						
Our Reference:	UNITS	112590-128	112590-129	112590-130	112590-131	112590-133
Your Reference		HA119	QA4a	HA119	HA120	HA121
Depth		0-0.1	-	0.3-0.4	0-0.1	0-0.1
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	08/07/2014
Moisture	%	13	10	8.6	16	12
						-
Moisture						
Our Reference:	UNITS	112590-135	112590-136	112590-137	112590-152	
Your Reference		HA122	HA122	QA5a	TP116	
Depth		0-0.1	0.3-0.4	-	0.5-0.7	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	07/07/2014	07/07/2014	07/07/2014	07/07/2014	1
Date analysed	-	08/07/2014	08/07/2014	08/07/2014	08/07/2014	
Moisture	%	7.9	11	12	19	

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.

			ent Referenc	e: A	S 130383		1	
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
Date analysed	-			08/07/2 014	112590-1	08/07/2014 08/07/2014	LCS-8	08/07/2014
TRHC6 - C9	mg/kg	25	Org-016	<25	112590-1	<25 <25	LCS-8	119%
TRHC6 - C10	mg/kg	25	Org-016	<25	112590-1	<25 <25	LCS-8	119%
Benzene	mg/kg	0.2	Org-016	<0.2	112590-1	<0.2 <0.2	LCS-8	116%
Toluene	mg/kg	0.5	Org-016	<0.5	112590-1	<0.5 <0.5	LCS-8	126%
Ethylbenzene	mg/kg	1	Org-016	<1	112590-1	<1 <1	LCS-8	118%
m+p-xylene	mg/kg	2	Org-016	~2	112590-1	<2 <2	LCS-8	116%
o-Xylene	mg/kg	1	Org-016	<1	112590-1	<1 <1	LCS-8	121%
naphthalene	mg/kg	1	Org-014	<1	112590-1	<1 <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	101	112590-1	86 99 RPD: 14	LCS-8	97%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
Date analysed	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-8	07/07/2014
TRHC 10 - C 14	mg/kg	50	Org-003	<50	112590-1	<50 <50	LCS-8	123%
TRHC 15 - C28	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	117%
TRHC29 - C36	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	96%
TRH>C10-C16	mg/kg	50	Org-003	<50	112590-1	<50 <50	LCS-8	123%
TRH>C16-C34	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	117%
TRH>C34-C40	mg/kg	100	Org-003	<100	112590-1	<100 <100	LCS-8	96%
Surrogate o-Terphenyl	%		Org-003	99	112590-1	96 96 RPD:0	LCS-8	112%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			07/07/2 014	112590-1	7/07/2014 7/07/2014	LCS-8	07/07/2014
Date analysed	-			07/07/2 014	112590-1	7/07/2014 7/07/2014	LCS-8	07/07/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	LCS-8	117%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	LCS-8	124%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.1	LCS-8	123%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	0.1 0.4 RPD:120	LCS-8	122%

Client Reference: AS 130383								
QUALITY CONTROL PAHs in Soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	0.1 0.4 RPD:120	LCS-8	124%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	LCS-8	113%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	112590-1	<0.2 0.4	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	112590-1	0.07 0.21 RPD:100	LCS-8	121%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	112590-1	<0.1 0.2	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	97	112590-1	101 102 RPD:1	LCS-8	103%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
Acid Extractable metals in soil					SII#	Base II Duplicate II % RPD		Recovery
Date digested	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Date analysed	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	112590-1	<4 <4	LCS-1	90%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	112590-1	<0.4 <0.4	LCS-1	96%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	3 3 RPD:0	LCS-1	95%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	2 2 RPD:0	LCS-1	95%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	5 6 RPD:18	LCS-1	94%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	112590-1	<0.1 <0.1	LCS-1	80%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	8 10 RPD:22	LCS-1	95%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	112590-1	32 35 RPD:9	LCS-1	95%

		Cli	ent Referenc	e: A	S 130383			
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date prepared	-			07/07/2 014	112590-1	07/07/2014 07/07/2014	LCS-1	07/07/2014
Date analysed	-			10/07/2 014	112590-1	10/07/2014 10/07/2014	LCS-1	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	0.5	Inorg-026	<0.5	112590-1	45 47 RPD:4	LCS-1	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank				
Moisture								
Date prepared	-			[NT]				
Date analysed	-			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	6	Dup. Sm#	Base+	Duplicate Duplicate + %RF	Spike Sm#	Spike % Rec	overy
Date extracted	-		112590-20	07/07/2	2014 07/07/201	4 LCS-9	07/07/201	4
Date analysed	-		112590-20	08/07/2	2014 08/07/201	4 LCS-9	09/07/201	4
TRHC6 - C9	mg/k	g	112590-20		<25 <25	LCS-9	126%	
TRHC 6 - C10	mg/kg	g	112590-20		<25 <25	LCS-9	126%	
Benzene	mg/k	g	112590-20		<0.2 <0.2	LCS-9	123%	
Toluene	mg/kg	g	112590-20		<0.5 <0.5	LCS-9	123%	
Ethylbenzene	mg/kg	g	112590-20		<1 <1	LCS-9	126%	
m+p-xylene	mg/k	g	112590-20		<2 <2	LCS-9	126%	
o-Xylene	mg/kg	g	112590-20		<1 <1	LCS-9	129%	
naphthalene	mg/k	g	112590-20		<1 <1	[NR]	[NR]	
Surrogate aaa- Trifluorotoluene	%		112590-20	96	97 RPD: 1	LCS-9	100%	
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	6	Dup.Sm#	Base+	Duplicate Duplicate+%RF	Spike Sm#	Spike % Rec	overy
Date extracted	-		112590-20	07/07/2	2014 07/07/201	4 LCS-9	07/07/201	4
Date analysed	-		112590-20		 2014 07/07/201		07/07/201	
TRHC10 - C14	mg/k	g	112590-20		<50 <50	LCS-9	132%	
TRHC 15 - C28	mg/k		112590-20	<	<100 <100	LCS-9	131%	
TRHC29 - C36	mg/k		112590-20	<	<100 <100	LCS-9	98%	
TRH>C10-C16	mg/k		112590-20		<50 <50	LCS-9	132%	
TRH>C16-C34	mg/kg		112590-20	<	:100 <100	LCS-9	131%	
TRH>C34-C40	mg/k		112590-20	<	<100 <100	LCS-9	98%	
Surrogate o-Terphenyl	%		112590-20	95	93 RPD:2	LCS-9	119%	

		Client Reference	e: AS 130383		
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-20	7/07/2014 7/07/2014	LCS-9	07/07/2014
Date analysed	-	112590-20	7/07/2014 7/07/2014	LCS-9	07/07/2014
Naphthalene	mg/kg	112590-20	<0.1 <0.1	LCS-9	116%
Acenaphthylene	mg/kg	112590-20	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-20	0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-20	<0.1 <0.1	LCS-9	123%
Phenanthrene	mg/kg	112590-20	0.1 0.1 RPD:0	LCS-9	123%
Anthracene	mg/kg	112590-20	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-20	0.5 0.5 RPD:0	LCS-9	122%
Pyrene	mg/kg	112590-20	0.5 0.5 RPD:0	LCS-9	123%
Benzo(a)anthracene	mg/kg	112590-20	0.4 0.3 RPD:29	[NR]	[NR]
Chrysene	mg/kg	112590-20	0.4 0.4 RPD:0	LCS-9	111%
Benzo(b+k)fluoranthene	mg/kg	112590-20	1.2 1 RPD: 18	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-20	0.58 0.54 RPD:7	LCS-9	121%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-20	0.5 0.4 RPD:22	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-20	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-20	0.4 0.4 RPD:0	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-20	102 99 RPD:3	LCS-9	103%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Date analysed	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Arsenic	mg/kg	112590-20	<4 <4	LCS-2	91%
Cadmium	mg/kg	112590-20	<0.4 <0.4	LCS-2	95%
Chromium	mg/kg	112590-20	3 3 RPD:0	LCS-2	95%
Copper	mg/kg	112590-20	3 3 RPD:0	LCS-2	95%
Lead	mg/kg	112590-20	8 7 RPD:13	LCS-2	94%
Mercury	mg/kg	112590-20	<0.1 <0.1	LCS-2	85%
Nickel	mg/kg	112590-20	4 4 RPD:0	LCS-2	93%
Zinc	mg/kg	112590-20	20 19 RPD:5	LCS-2	94%

		Client Referenc	e: AS 130383		-
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112590-20	07/07/2014 07/07/2014	LCS-2	07/07/2014
Date analysed	-	112590-20	10/07/2014 10/07/2014	LCS-2	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-20	28 28 RPD:0	LCS-2	102%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-33	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-33	08/07/2014 08/07/2014	112590-4	08/07/2014
TRHC6 - C9	mg/kg	112590-33	<25 <25	112590-4	98%
TRHC6 - C10	mg/kg	112590-33	<25 <25	112590-4	98%
Benzene	mg/kg	112590-33	<0.2 <0.2	112590-4	96%
Toluene	mg/kg	112590-33	<0.5 <0.5	112590-4	105%
Ethylbenzene	mg/kg	112590-33	<1 <1	112590-4	96%
m+p-xylene	mg/kg	112590-33	<2 <2	112590-4	95%
o-Xylene	mg/kg	112590-33	<1 <1	112590-4	98%
naphthalene	mg/kg	112590-33	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	112590-33	94 100 RPD: 6	112590-4	99%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-33	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-33	08/07/2014 08/07/2014	112590-4	07/07/2014
TRHC 10 - C 14	mg/kg	112590-33	<50 <50	112590-4	124%
TRHC 15 - C28	mg/kg	112590-33	<100 <100	112590-4	120%
TRHC 29 - C36	mg/kg	112590-33	<100 <100	112590-4	117%
TRH>C10-C16	mg/kg	112590-33	<50 <50	112590-4	124%
TRH>C16-C34	mg/kg	112590-33	<100 <100	112590-4	120%
TRH>C34-C40	mg/kg	112590-33	<100 <100	112590-4	117%
Surrogate o-Terphenyl	%	112590-33	93 105 RPD:12	112590-4	110%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-33	7/07/2014 7/07/2014	LCS-10	07/07/2014
Date analysed	-	112590-33	8/07/2014 8/07/2014	LCS-10	07/07/2014
Naphthalene	mg/kg	112590-33	<0.1 <0.1	LCS-10	117%
Acenaphthylene	mg/kg	112590-33	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-33	0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-33	<0.1 <0.1	LCS-10	124%
Phenanthrene	mg/kg	112590-33	0.4 <0.1	LCS-10	123%
Anthracene	mg/kg	112590-33	0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-33	1 0.3 RPD:108	LCS-10	123%
Pyrene	mg/kg	112590-33	0.9 0.3 RPD:100	LCS-10	125%
Benzo(a)anthracene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]

		Client Reference	e: AS 130383		
QUALITYCONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Chrysene	mg/kg	112590-33	0.5 0.2 RPD:86	LCS-10	111%
Benzo(b+k)fluoranthene	mg/kg	112590-33	1.1 0.4 RPD:93	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-33	0.64 0.19 RPD:108	LCS-10	125%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-33	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-33	0.5 0.2 RPD:86	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-33	100 100 RPD:0	LCS-10	103%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Datedigested	-	112590-33	07/07/2014 07/07/2014	LCS-3	07/07/2014
Date analysed	-	112590-33	07/07/2014 07/07/2014	LCS-3	07/07/2014
Arsenic	mg/kg	112590-33	6 6 RPD:0	LCS-3	91%
Cadmium	mg/kg	112590-33	<0.4 <0.4	LCS-3	96%
Chromium	mg/kg	112590-33	15 21 RPD: 33	LCS-3	97%
Copper	mg/kg	112590-33	8 9 RPD:12	LCS-3	95%
Lead	mg/kg	112590-33	9 7 RPD:25	LCS-3	95%
Mercury	mg/kg	112590-33	<0.1 <0.1	LCS-3	87%
Nickel	mg/kg	112590-33	47 49 RPD:4	LCS-3	95%
Zinc	mg/kg	112590-33	47 39 RPD:19	LCS-3	96%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	112590-35	07/07/2014 07/07/2014	LCS-3	07/07/2014
Date analysed	-	112590-35	10/07/2014 10/07/2014	LCS-3	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-35	1098 1127 RPD:3	LCS-3	99%
QUALITY CONTROL	UNITS	Dup. Sm#	Duplicate	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
Date analysed	-	112590-55	08/07/2014 08/07/2014	112590-35	09/07/2014
TRHC6 - C9	mg/kg	112590-55	<25 <25	112590-35	98%
TRHC6 - C10	mg/kg	112590-55	<25 <25	112590-35	98%
Benzene	mg/kg	112590-55	<0.2 <0.2	112590-35	96%
Toluene	mg/kg	112590-55	<0.5 <0.5	112590-35	103%
Ethylbenzene	mg/kg	112590-55	<1 <1	112590-35	97%
m+p-xylene	mg/kg	112590-55	<2 <2	112590-35	96%
o-Xylene	mg/kg	112590-55	<1 <1	112590-35	99%
naphthalene	mg/kg	112590-55	<1 <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	112590-55	92 92 RPD:0	112590-35	93%

		Client Referenc	e: AS 130383		
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
Date analysed	-	112590-55	07/07/2014 07/07/2014	112590-35	07/07/2014
TRHC 10 - C 14	mg/kg	112590-55	<50 <50	112590-35	98%
TRHC 15 - C28	mg/kg	112590-55	<100 <100	112590-35	114%
TRHC 29 - C 36	mg/kg	112590-55	<100 <100	112590-35	87%
TRH>C10-C16	mg/kg	112590-55	<50 <50	112590-35	98%
TRH>C16-C34	mg/kg	112590-55	<100 <100	112590-35	114%
TRH>C34-C40	mg/kg	112590-55	<100 <100	112590-35	87%
Surrogate o-Terphenyl	%	112590-55	93 91 RPD:2	112590-35	108%
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	112590-55	7/07/2014 7/07/2014	LCS-11	07/07/2014
Date analysed	-	112590-55	8/07/2014 8/07/2014	LCS-11	07/07/2014
Naphthalene	mg/kg	112590-55	<0.1 <0.1	LCS-11	115%
Acenaphthylene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-55	<0.1 <0.1	LCS-11	114%
Phenanthrene	mg/kg	112590-55	<0.1 <0.1	LCS-11	120%
Anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Fluoranthene	mg/kg	112590-55	<0.1 <0.1	LCS-11	118%
Pyrene	mg/kg	112590-55	<0.1 <0.1	LCS-11	118%
Benzo(a)anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Chrysene	mg/kg	112590-55	<0.1 <0.1	LCS-11	105%
Benzo(b+k)fluoranthene	mg/kg	112590-55	<0.2 <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-55	<0.05 <0.05	LCS-11	114%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-55	<0.1 <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-55	104 100 RPD:4	LCS-11	108%

		Client Referenc	e: AS 130383		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	112590-55	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-55	07/07/2014 07/07/2014	112590-4	07/07/2014
Arsenic	mg/kg	112590-55	6 5 RPD:18	112590-4	84%
Cadmium	mg/kg	112590-55	<0.4 <0.4	112590-4	92%
Chromium	mg/kg	112590-55	13 14 RPD:7	112590-4	91%
Copper	mg/kg	112590-55	12 9 RPD:29	112590-4	101%
Lead	mg/kg	112590-55	16 31 RPD:64	112590-4	90%
Mercury	mg/kg	112590-55	<0.1 <0.1	112590-4	88%
Nickel	mg/kg	112590-55	6 6 RPD:0	112590-4	90%
Zinc	mg/kg	112590-55	47 120 RPD:87	112590-4	83%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + % RPD		
Date prepared	-	112590-59	07/07/2014 07/07/2014	112590-4	07/07/2014
Date analysed	-	112590-59	10/07/2014 10/07/2014	112590-4	07/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-59	6.0 7.0 RPD:15	112590-4	#
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-105	7/07/2014 7/07/2014	112590-4	07/07/2014
Date analysed	-	112590-105	8/07/2014 8/07/2014	112590-4	07/07/2014
Naphthalene	mg/kg	112590-105	<0.1 <0.1	112590-4	118%
Acenaphthylene	mg/kg	112590-105	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-105	0.4 0.4 RPD:0	[NR]	[NR]
Fluorene	mg/kg	112590-105	0.2 0.2 RPD:0	112590-4	126%
Phenanthrene	mg/kg	112590-105	3.5 4.1 RPD:16	112590-4	126%
Anthracene	mg/kg	112590-105	0.8 1.0 RPD:22	[NR]	[NR]
Fluoranthene	mg/kg	112590-105	12 15 RPD:22	112590-4	127%
Pyrene	mg/kg	112590-105	12 15 RPD:22	112590-4	129%
Benzo(a)anthracene	mg/kg	112590-105	9.0 11 RPD:20	[NR]	[NR]
Chrysene	mg/kg	112590-105	9.3 11 RPD:17	112590-4	116%
Benzo(b+k)fluoranthene	mg/kg	112590-105	22 26 RPD:17	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-105	13 16 RPD:21	112590-4	126%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-105	9.1 11 RPD: 19	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-105	0.9 1.4 RPD:43	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-105	8.9 11 RPD:21	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-105	100 102 RPD:2	112590-4	102%

				0 " 0 "	
QUALITYCONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	[NT]	[NT]	112590-35	07/07/2014
Date analysed	-	[NT]	[NT]	112590-35	07/07/2014
Arsenic	mg/kg	[NT]	[NT]	112590-35	87%
Cadmium	mg/kg	[NT]	[NT]	112590-35	93%
Chromium	mg/kg	[NT]	[NT]	112590-35	107%
Copper	mg/kg	[NT]	[NT]	112590-35	71%
Lead	mg/kg	[NT]	[NT]	112590-35	86%
Mercury	mg/kg	[NT]	[NT]	112590-35	95%
Nickel	mg/kg	[NT]	[NT]	112590-35	79%
Zinc	mg/kg	[NT]	[NT]	112590-35	113%
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112590-33	07/07/2014
Date analysed	-	[NT]	[NT]	112590-33	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	[NT]	[NT]	112590-33	108%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-117	7/07/2014 7/07/2014	112590-35	07/07/2014
Date analysed	-	112590-117	8/07/2014 8/07/2014	112590-35	07/07/2014
Naphthalene	mg/kg	112590-117	<0.1 <0.1	112590-35	107%
Acenaphthylene	mg/kg	112590-117	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-117	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-117	<0.1 <0.1	112590-35	114%
Phenanthrene	mg/kg	112590-117	0.9 0.8 RPD:12	112590-35	115%
Anthracene	mg/kg	112590-117	0.3 0.2 RPD:40	[NR]	[NR]
Fluoranthene	mg/kg	112590-117	3.2 3.3 RPD:3	112590-35	117%
Pyrene	mg/kg	112590-117	3.1 3.3 RPD:6	112590-35	118%
Benzo(a)anthracene	mg/kg	112590-117	1.5 1.9 RPD:24	[NR]	[NR]
Chrysene	mg/kg	112590-117	1.6 2.1 RPD:27	112590-35	105%
Benzo(b+k)fluoranthene	mg/kg	112590-117	3.6 5.0 RPD:33	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-117	1.9 2.5 RPD:27	112590-35	113%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-117	1.3 1.7 RPD:27	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-117	0.2 0.2 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-117	1.2 1.7 RPD:34	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-117	98 106 RPD:8	112590-35	103%

			e: AS 130383	0 11 0 11	
QUALITYCONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	[NT]	[NT]	112590-74	07/07/2014
Date analysed	-	[NT]	[NT]	112590-74	07/07/2014
Arsenic	mg/kg	[NT]	[NT]	112590-74	87%
Cadmium	mg/kg	[NT]	[NT]	112590-74	94%
Chromium	mg/kg	[NT]	[NT]	112590-74	95%
Copper	mg/kg	[NT]	[NT]	112590-74	100%
Lead	mg/kg	[NT]	[NT]	112590-74	86%
Mercury	mg/kg	[NT]	[NT]	112590-74	83%
Nickel	mg/kg	[NT]	[NT]	112590-74	90%
Zinc	mg/kg	[NT]	[NT]	112590-74	89%
QUALITYCONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112590-90	07/07/2014
Date analysed	-	[NT]	[NT]	112590-90	10/07/2014
Fluoride (1:5 soil:water)	mg/kg	[NT]	[NT]	112590-90	95%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil			Base + Duplicate + %RPD		
Date extracted	-	112590-136	7/07/2014 7/07/2014	112590-107	07/07/2014
Date analysed	-	112590-136	8/07/2014 8/07/2014	112590-107	07/07/2014
Naphthalene	mg/kg	112590-136	<0.1 <0.1	112590-107	105%
Acenaphthylene	mg/kg	112590-136	<0.1 <0.1	[NR]	[NR]
Acenaphthene	mg/kg	112590-136	<0.1 <0.1	[NR]	[NR]
Fluorene	mg/kg	112590-136	<0.1 <0.1	112590-107	115%
Phenanthrene	mg/kg	112590-136	0.7 0.7 RPD:0	112590-107	113%
Anthracene	mg/kg	112590-136	0.2 0.2 RPD:0	[NR]	[NR]
Fluoranthene	mg/kg	112590-136	2.6 2.7 RPD:4	112590-107	107%
Pyrene	mg/kg	112590-136	2.5 2.7 RPD:8	112590-107	108%
Benzo(a)anthracene	mg/kg	112590-136	1.4 1.5 RPD:7	[NR]	[NR]
Chrysene	mg/kg	112590-136	1.7 1.8 RPD:6	112590-107	105%
Benzo(b+k)fluoranthene	mg/kg	112590-136	3.8 4.2 RPD:10	[NR]	[NR]
Benzo(a)pyrene	mg/kg	112590-136	1.7 2.0 RPD:16	112590-107	117%
Indeno(1,2,3-c,d)pyrene	mg/kg	112590-136	1.2 1.4 RPD:15	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	112590-136	0.2 0.2 RPD:0	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	112590-136	1.3 1.4 RPD:7	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	112590-136	77 102 RPD:28	112590-107	97%

		Client Referenc	e: AS 130383
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	112590-89	07/07/2014 07/07/2014
Date analysed	-	112590-89	10/07/2014 10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-89	90 92 RPD:2
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	112590-129	07/07/2014 07/07/2014
Date analysed	-	112590-129	10/07/2014 10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-129	130 130 RPD:0
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate
Miscellaneous Inorg - soil			Base + Duplicate + %RPD
Date prepared	-	112590-141	07/07/2014 07/07/2014
Date analysed	-	112590-141	10/07/2014 10/07/2014
Fluoride (1:5 soil:water)	mg/kg	112590-141	170 160 RPD:6

Report Comments:

Total Recoverable Hydrocarbons in soil:# Percent recovery is not possible to report as the high concentration of analytes in the sa have caused interference.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 112590-55 for Pb and Zn. Therefore a triplicate result has been issued as laboratory sample number 112590-153.

PAH's in soil: The RPD for duplicate results is accepted due to the non homogenous nature of the sample/s.

Asbestos ID was analysed by Approved Identifier:	Not applicable for this job
Asbestos ID was authorised by Approved Signatory:	Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Sista AY and ndease sendt Provide as much information about the sample as you can inVrnlah Comments E-mail: ahie@envirolabservices.com.au (if applicable) 112.503 12 Ashley St, Chatswood, NSW, 2067 Samples Received: Cool or Ambient (circle one) ALS Transported by: Hand delivered / counier Page No: ∦ **Envirolab Services** 02 9910 6201 Phone: 02 9910 6200 emperature Recieved at: **Contact: Aileen Hie** Fax: Environmental Division Telephone: + 61-2-8784 8555 ES1414732 5 Work Order SE 13 Sydney Tests Required **CHAIN OF CUSTODY - Client** Note: Inform tab in advance if urgent tumaround is required -LAVEEN helde environcen of on or choose: Standard) 1 day / 2 day / 3 day 3 Client Project Name and Number HUDIZO ASI30383 **ENVIROLAB SERVICES** So-KINVe Ĺ Envirolab Services Quote No. : Received by (company): Date results required: urcharge applies Print Name: Date & Time: SHUJ aanomy angmos PÔ No.: ~ Signature: Type of sample KIRSTVICIPEENTIENO Suite 196,1-EWERZ SOCIEDERO The Junchon NSW2271 ิสิ ∌ Date 11:3 C はたこ FIONA ROBINS ON Sample information Fax: Ð E2558127-04-06 16/25 SB127: 0-0(152558127-101-02 <u>E</u>LS **Client Sample ID** 41/14 HARD START Relinquished by (company): DUPEN ENV 1201 DUPE JUP D 2 P 5 2 Print Name: roject Mgr: Envirolab Sample ID Date & Time: Signature: ampler: ddress: 105 د د د Client: 0 Email: 'hone: 0 90

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

6/8 110244

	CERT	IFICATE OF ANALYSIS	
Work Order	ES1414732	Page	: 1 of 3
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: FIONA ROBINSON	Contact	: Client Services
Address	EPO BOX 564	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	MAITLAND NSW, AUSTRALIA 2320		
E-mail	: frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500
Project	: HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 04-JUL-2014
Sampler	: KG	Issue Date	: 11-JUL-2014
Site	:		
		No. of samples received	:1
Quote number	: EN/072/14	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been electronically	signed by the authorized signatories	indicated below. Electronic signing has been						
NATA	Accredited for compliance with	carried out in compliance with procedures specified in 21 CFR Part 11.								
	ISO/IEC 17025.	Signatories	Accreditation Category							
WORLD RECOGNISED ACCREDITATION		Ankit Joshi Nanthini Coilparampil	Inorganic Chemist Laboratory Manager - Inorganics	Sydney Inorganics Sydney Inorganics						

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Matrix: SOIL (Matrix: SOIL) Client sample ID		DUP E1		 		
	Client sampling date / time			01-JUL-2014 15:00		 	
Compound	CAS Number	LOR	Unit	ES1414732-001		 	
EA055: Moisture Content							
Moisture Content (dried @ 103°C)		1.0	%	16.1		 	
EK040S: Fluoride Soluble							
Fluoride	16984-48-8	1	mg/kg	<1		 	

QUALITY CONTROL REPORT

Work Order	: ES1414732	Page	: 1 of 4
Client	ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: FIONA ROBINSON	Contact	: Client Services
Address	: PO BOX 564 MAITLAND NSW, AUSTRALIA 2320	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500
Project	: HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 04-JUL-2014
Sampler	: KG	Issue Date	: 11-JUL-2014
Order number	:		
		No. of samples received	: 1
Quote number	: EN/072/14	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category	
compliance with ISO/IEC 17025.	Ankit Joshi	Inorganic Chemist	Sydney Inorganics	
130/IEC 17025.	Nanthini Coilparampil	Laboratory Manager - Inorganics	Sydney Inorganics	

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)	
EA055: Moisture Cor	ntent (QC Lot: 3532612)									
ES1414733-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	18.0	18.1	0.0	0% - 50%	
ES1414866-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	14.0	14.8	5.6	0% - 50%	
EK040S: Fluoride So	EK040S: Fluoride Soluble (QC Lot: 3530034)									
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	1	mg/kg	<1	<1	0.0	No Limit	

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
	Report		Report	Spike	Spike Recovery (%)	Recovery	Recovery Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS Low		High
EK040S: Fluoride Soluble (QCLot: 3530034)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	103	69	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL		Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK040S: Fluoride S	oluble (QCLot: 3530034)						
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	125 mg/kg	106	70	130

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL	ıb-Matrix: SOIL			Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Rec	overy (%)	Recovery	Limits (%)	RPD	s (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EK040S: Fluoride S	EK040S: Fluoride Soluble (QCLot: 3530034)										
ES1414732-001	DUP E1	EK040S: Fluoride	16984-48-8	125 mg/kg	106		70	130			

INTERPRETIVE QUALITY CONTROL REPORT										
Work Order	: ES1414732	Page	: 1 of 5							
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney							
Contact	: FIONA ROBINSON	Contact	: Client Services							
Address	: PO BOX 564 MAITLAND NSW, AUSTRALIA 2320	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164							
E-mail	: frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com							
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555							
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500							
Project	: HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement							
Site	:									
C-O-C number	:	Date Samples Received	: 04-JUL-2014							
Sampler	: KG	Issue Date	: 11-JUL-2014							
Order number	:									
		No. of samples received	: 1							
Quote number	: EN/072/14	No. of samples analysed	:1							

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

Matrix: SOIL

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

					rioranig arrio		· · · · · · · · · · · · · · · · · · ·
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) DUP E1	01-JUL-2014				09-JUL-2014	15-JUL-2014	✓
EK040S: Fluoride Soluble							
Soil Glass Jar - Unpreserved (EK040S) DUP E1	01-JUL-2014	08-JUL-2014	08-JUL-2014	1	08-JUL-2014	05-AUG-2014	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification								
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification		
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Fluoride - Soluble	EK040S	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Moisture Content	EA055-103	2	20	10.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Laboratory Control Samples (LCS)									
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Method Blanks (MB)									
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		
Matrix Spikes (MS)									
Fluoride - Soluble	EK040S	1	1	100.0	5.0	~	NEPM 2013 Schedule B(3) and ALS QCS3 requirement		

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.
Preparation Methods	Method	Matrix	Method Descriptions
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are
analytes			leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Form:
302 -
Chain
90
ustody-1
Client, I
Issued
14/02/08,
Version 3,
Page
of 1.

Guint: Clivity
Client: EIN UI PON Client Project Name and Number: HIDRO Sample: FURSING GREENVELCO Admss: FOR SUPERVELCO FURSING GREENVELCO Admss: FOR No.: Imail: KGTORO MALOON MALOON MALOON FURSING CLIENT Sample: For No.: Envirolab Imail: KGTORO MALOON MALOON FURSING CLIENT Sample: Date Sample: For choose Fundawity 1 day / 2 day / 3 Note: Information Envirolab Client Sample: Date Sample: For choose Fundawity 1 day / 2 day / 3 Note: Information Envirolab Client Sample: Date Sample: For choose Fundawity 1 day / 2 day / 3 Note: Information Envirolab Client Sample: Date Sample: For choose Fundawity 1 day / 2 day / 3 Note: Information Sample: Information Sample: Date Sample: For choose Fundawity 1 day / 2 day / 3 Note: Information Sample: Information Sample: Date Sample: Sample: Sample: Sample: Information Sample: Date Sample: Job Sample: Job Sample: Job Sample: Sample: Information Sample: Date Sample: Job Sample: Job Sample: Job Sample: Sample: Information Sample: Job Sample: Job Sample: Job Sample: Job Sample: Sample: Information Sample: Job Sa
Client: EINVI/EQN Client Project Name and Number: H9DR2 Sample: KJESC/D. GPENFLELD FO No.: H9DR2 Matress: NULLCIS C. (GDC PMC FO No.: H9DR2 Imail: KG122000 FO No.: No.: JULYCIS C. (GDC PC Imail: KG122000 NS NO.: No.: JULYCIS C. (GDC PC Feminiab Client Sample ID Date Sample ID Date No.: Job and a vision of sample in avaance Fungent unavourd is survive applies Sample ID Date Npe of sample is avaance Fungent unavourd is survive applies Sample ID Date Sample ID Sample ID Date Npe of sample is Sample ID Sample ID Sample ID Date Sample ID Sample ID Sample ID Date Sample ID Sample ID Sample ID Date Npe of sample IS Sign Sign Sign O-Orl Sample ID Sample ID Sign Sign O-Orl Sign Sign Sign O-Orl Sample ID Sample ID Sign Sign O-Orl Sign Sign O-Orl Sample ID Sign Sign O-Orl Sign Sign O-Orl Sign Sign O-Orl Sample ID Sign Sign O-Orl Sign Sign O-Orl Sign O-Orl Sample ID Sign Sign O-Orl Sign O-Orl Sign O-Orl Sample ID Sign Sign O
Client: E/N V/ I/E/A/N Client Project Name and Number: H9/DR0 Sample:: FU/L/S/DU/L/BE/N/F/L/DU/L/B/C/A/S/13036/3 H9/DR0 Address: SULHC/S/B J/L/L/L/S/DU/L/B/C/L/B/C/L/B Enviroilab Services Quote No.: Enviroilab Th/L/DR0/D/L/D/L/D/L/D/L/D/L/D/L/D/L/D/L/D/L/D/
Client: EINVITEON Client Project Name and Number: Project Mgr: FLORSIN GNE FROME H1DR:: H1DR:: Sampler: KJESDV GREENFULCO po No.: Address: SULHCISB JEUNICIAN po No.: Imail: KGREENFULCO Surple Information po no.: Phone: LACS SULHCISB Guene No.: Date results required: Imail: KGREENFULCE Sample Information or chooses fundardy 1 day / 2 day / 3 Phone: LYG2 SULHCIBB Date Surple Information Envirolab Sample Information Sample Information or chooses fundardy 1 day / 2 day / 3 Sample ID Sample Information Sample Information Surface fundardy 1 day / 2 day / 3 Sample ID Sample Information Surface fundardy 1 day / 2 day / 3 Sample ID Sample Information Surface fundardy 1 day / 2 day / 3 Sample ID Sample IN Sample Information Surface fundardy 1 day / 2 day / 3 Sample ID Sample IN Sample Information Surface fundardy 1 day / 2 day / 3 Sample ID Sample IN Sample IN Sufface fundardy 1 day / 2 day / 3 Sample ID Sample IN Sample IN Sufface fundardy 1 day / 2 day / 3 Sample ID Sufface fu
ENVIREDN Client Project Name and Number: Magr: FLONIA (O)BINCON H1DR0 F:: SULHELS B. J. C. (Labc. Ed. Envirolab Services Quote No. : The Junch on NS in 2021 Date results required: KGTEEON FULL (2000) No:: Date results required: KGTEEON FULL (2000) Nore: information Nore: information is in advance if urgent tumaround is in advance if urgent tu
ENVIRENT Client Project Name and Number: Mgr: FLONA (200) NSA H9DR0 Fr: KIRSOV, GREENFILLO PO No.: FINE Subt Control 2, 56 C (abc Ed Envirolab Services Quote No. : The Jun Chon, NS iv 2121 Date results required: Kgreen full APEnNITION (Dr. 121) Or choose faminard) 1 day / 2 day / 3 HG2 SUULT Fax: Sample Information Sample Information Sample Information ACOSS SB134: 0.2-0:1 21 H14 ACOSS SB134: 0.2-0:1 21 H14 ACOSS SB134: 0.2-0:1 21 H14 ACOSS SB135: 0.3-0+0 X ACOSS SB135: 0.3-0+0 X
EIN VI PEAN Client Project Name and Number: Mgr: FLONA (200) PO No.: Fr: KLRSM (200) PO No.: F: Main and Number: PO No.: F: Main and Project Name and Number: PO No.: F: Surplet Information Po No.: KG12200 Po No.: Po No.: VH62 SULUE Fax: Sample Information Surplet Information Poilab Client Sample ID Sampled Type of sample Poilab Sampled Process B135: 0 -0-1 Poilab Poilab Simplet Poilab Samplet Poila Samplet
How Project Name and Number: Mar: FLONA (OPEN/NGA) HIP DRO No.: HIP DRO A (OPEN/NGA) HIP DRO AS (30363) F:: SUJECTO (OPEN/NGA) PO No.: HIP DRO A (OPEN/NGA) PO No.: HIP DRO A (OPEN/NGA) PO No.: HIP DRO A (OPEN/NGA) PO No.: The Junch ON (N 12) 71 Date results required: Accoss function Imple Information Sample Information Sample Information PTCOSS B134:0-0:1 21 7114 Soll Accoss B135:0-0:1 Soll Accoss B135:0-0:1 Soll Accoss B135:0-0:1 Soll
ENVIREN Client Project Name and Number: Mgr: FLONA (ROBINSON) HSDR0 r: KARSON GREENFLOO PO No.: The Junchom NS IN 2021 Date results required: KAREADAR (ROBON NS IN 2021) Date results required: KAREADAR (ROBON NS IN 2021) Por choose standard 1 day / 2 day / 3 VH62 STULT Fax: Sample Information VH62 STULH Fax: Surcharge applies Sample Information Sample Information REC25 SB134:0.0-0.1 Date NEC25 SB135:0-0.1 SILL NEC25 SB135:0-0.1 SILL
EIVUIRAN client Project Name and Number: Mar: FLONIA (OPENNICA) HSDRC AS 130383 r: KURSON GREENFICUO PO No.: SULHCIS B, LEUEL 2, 55 Clabc Ed Envirolab Services Quote No. : The Junchon NS IV 2291 Date results required: KGreenful AC environ (OVP + COM) Or choosef, standard, 1 day / 2 day / 3 HGC2 STULF Fax: Sumple Information UH62 STULF Date Surcharge applies Simple Information Date Surcharge applies Client Sample Information Date Surcharge applies AC25 SBI34:0-0.1 Date Surcharge applies
EINUTICAN Client Project Name and Number: Mgr: FLANA ROBINSON HSDRA AS 130383 r:: KIRSON GREENFICO PO No.: SULHCIA B, LEUEL 2, 50 CLABE Rd Envirolab Services Quote No. : The Junch on NS iv 2291 Date results required: Kgreen ful de environ NS iv 2291 Or choose Standard 1 day / 2 day / 3 VHAC SHUH Fax: Sample Information Sample Information Sample Information Client Sample ID Date sample ID Date Sample ID Date Sample ID Sampled
EINUTICAN client Project Name and Number: Mgr: FLANA (OPENNSOA) HYDRO AS 1303873 r:: KIRSON GREENNFLOO PO No.: SULHCIA B, LEULEI 2, 56 CL(abc.ed Envirolab Services Quote No.: The Junchon NS iv 2291 Date results required: KGYREAD field Pennultan (OVp v/ Opm) Or choosef, Standardy 1 day / 2 day / 3 VHAC STUHH Fax: Sample Information Sample Information e ID Date Client Sample ID Date sampled Type of sample
EINUTEAN client Project Name and Number: Mgr: MGNA ROBINSON HSDRA AS 130383 r: KIRSIN GREENFICO PO No.: SULHCIS B, LEUEL 2, 55 Clabe Ed Envirolab Services Quote No. : The Junchon NS N 1291 Date results required: Kgreenfuldeenwirdn (Orps(Orn) Or choosef, Standard) 1 day / 2 day / 3 H962 S444 Fax: Surharge applies
ENVIRON MOT: FLONA ROBINSON SULLESA GREENFIELD SULLESA GREENFIELD ME JUNCHON NS IN 2231 KGREENFILD CENNICON COMPULSON 4962 SULLY Fax:
ENVIRON MOT: FLONA ROBINSON ELESAN GREENFIELD SULVEISB, LEWEI 2,55 CLOBERD The Junchon NSIN 2231 Kgreenfield Penviron Corp. Com
ENVIRON MORTINA ROBINSON HARSIN GREENFIELD SULVEISB ILEVEL 2,50 CLOBERD
ENVIRON MOR: MONA ROBINSON KIRSNU GREENFIELD
HUNDRON Mar: MONA ROBINSON

8/8

	CERTIFICATE OF ANALYSIS									
Work Order	ES1414735	Page	: 1 of 3							
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney							
Contact	: FIONA ROBINSON	Contact	: Client Services							
Address	EPO BOX 564	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164							
	MAITLAND NSW, AUSTRALIA 2320									
E-mail	frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com							
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555							
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500							
Project	: HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement							
Order number	:		•							
C-O-C number	:	Date Samples Received	: 04-JUL-2014							
Sampler	: KG	Issue Date	: 11-JUL-2014							
Site	:									
		No. of samples received	: 1							
Quote number	: EN/072/14	No. of samples analysed	: 1							

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

	NATA Accredited Laboratory 825	<i>Signatories</i> This document has been electronically	signed by the authorized signatories	indicated below. Electronic signing has been					
NATA	Accredited for compliance with	carried out in compliance with procedures specified in 21 CFR Part 11.							
	ISO/IEC 17025.	Signatories	Position	Accreditation Category					
WORLD RECOGNISED ACCREDITATION		Ankit Joshi Nanthini Coilparampil	Inorganic Chemist Laboratory Manager - Inorganics	Sydney Inorganics Sydney Inorganics					

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			DUP H1	 	
Client sampling date / time				02-JUL-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1414735-001	 	
EA055: Moisture Content						
Moisture Content (dried @ 103°C)		1.0	%	13.6	 	
EK040S: Fluoride Soluble						
Fluoride	16984-48-8	1	mg/kg	27	 	

QUALITY CONTROL REPORT

Work Order	: ES1414735	Page	: 1 of 4
Client	ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: FIONA ROBINSON	Contact	: Client Services
Address	: PO BOX 564 MAITLAND NSW, AUSTRALIA 2320	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 49344354	Telephone	+61-2-8784 8555
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500
Project	: HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 04-JUL-2014
Sampler	: KG	Issue Date	: 11-JUL-2014
Order number	:		
		No. of samples received	:1
Quote number	: EN/072/14	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Ankit Joshi	Inorganic Chemist	Sydney Inorganics
130/IEC 17025.	Nanthini Coilparampil	Laboratory Manager - Inorganics	Sydney Inorganics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: SOIL					Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EA055: Moisture Cor	EA055: Moisture Content (QC Lot: 3535469)											
ES1414892-002	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1.0	%	10.7	9.8	8.4	0% - 50%			
EK040S: Fluoride So	EK040S: Fluoride Soluble (QC Lot: 3536676)											
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	1	mg/kg	27	26	0.0	0% - 20%			

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
	Report	Spike	Spike Recovery (%) Recovery Li		Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK040S: Fluoride Soluble (QCLot: 3536676)								
EK040S: Fluoride	16984-48-8	1.0	mg/kg	<1	25.0 mg/kg	103	69	117

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL					Matrix Spike (MS) Report					
		Spike	SpikeRecovery(%)	Recovery L	imits (%)					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK040S: Fluoride S	Soluble (QCLot: 3536676)									
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	105	70	130			

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report							
				Spike	Spike Recovery (%)		Recovery Limits (%)		RPDs (%)		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit	
EK040S: Fluoride S	oluble (QCLot: 3536676)										
ES1414735-001	DUP H1	EK040S: Fluoride	16984-48-8	25.0 mg/kg	105		70	130			

Work Order	ES1414735	Page	: 1 of 5
Client	: ENVIRON AUSTRALIA PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: FIONA ROBINSON	Contact	: Client Services
Address	: PO BOX 564 MAITLAND NSW, AUSTRALIA 2320	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: frobinson@environcorp.com.au	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 49344354	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 49344359	Facsimile	: +61-2-8784 8500
Project Site	HYDRO AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
C-O-C number		Date Samples Received	: 04-JUL-2014
Sampler	: KG	Issue Date	: 11-JUL-2014
Order number	:		
		No. of samples received	: 1
Quote number	: EN/072/14	No. of samples analysed	:1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Analysis Holding Time Compliance

Matrix: SOIL

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

					i toranığ anto		· · · · · · · · · · · · · · · · · · ·
Method	Sample Date	Ex		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) DUP H1	02-JUL-2014				10-JUL-2014	16-JUL-2014	✓
EK040S: Fluoride Soluble							
Soil Glass Jar - Unpreserved (EK040S) DUP H1	02-JUL-2014	11-JUL-2014	09-JUL-2014	¥	11-JUL-2014	08-AUG-2014	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	: × = Quality Co	ntrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Fluoride - Soluble	EK040S	1	1	100.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Moisture Content	EA055-103	1	4	25.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Fluoride - Soluble	EK040S	1	1	100.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions	
Moisture Content	EA055-103	SOIL	A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).	
Fluoride - Soluble	EK040S	SOIL	APHA 21st ed., 4500 FC Soluble Fluoride is determined after a 1:5 soil/water extract using an ion selective electrode.	
Preparation Methods	Method	Matrix	Method Descriptions	
1:5 solid / water leach for soluble	EN34	SOIL	10 g of soil is mixed with 50 mL of distilled water and tumbled end over end for 1 hour. Water soluble salts are	
analytes leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis				

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

Matrix: SOII

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EK040S: Fluoride Soluble						
Soil Glass Jar - Unpreserved						
DUP H1	11-JUL-2014	09-JUL-2014	2			

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix H

Laboratory Reports for Groundwater

	CUSTODY ROLAB SERVICE Relation of the and Number ASI 3038.3 	DO 388 A M M A M A M A M A M A M A M A M A M	- Client		er: Envirolab Services		Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail:	3				E E	Farinets Condens	ENTROLEB 12 Ashley Ct	Charlewood NSW 2007	Job No: // SO SA		Receiv		Temp.Cochmister	Cooliparredicendek	Security: Macualoken/Ncm			X please serviting for	Samples Received: Cool or Ambient (circle one)
--	--	--	----------	--	------------------------	--	---------------------	-------------------	---------	---	--	--	--	-----	------------------	-----------------------	---------------------	------------------	--	--------	--	-----------------	--------------------	--------------------------	--	--	------------------------	--

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

12

Par Same

Fuckarsh	FIT VI UIQU	itoes	12 Ashlev St. Chatswood, NSW 2067		200	5201	E-mail: ahie@envirolabservices com ai			mments	Provide as much	sample as you can	Olonia KILOZ	motrill Stranlo	7								+ Wel arme.	* on Tuescici.		Samples Received - Conf. or Ambient former	14522047288854540		weinen / courier
		Envirolab Services	12 Ashlev St. Cha		Phone: 02 9910 6200	Fax: 02 9910 6201	E-mail: ahie@em	Contact: Alleen Mie																		Samulas Rominad. Co.	Temperature Beriauad at	Transminuted hose thread definence (11 digit	
Client							y / 3 day	und is required -	Tests Recuired		570	>^S												X		-	~ Waro.		17
CHAIN OF CUSTODY - Client	ENVIROLAB SERVICES	ame and Number:	ASI30383		es Quote No. :	uired:	Or choose: standard 1 day / 2 day / 3 day	Note: Inform to m advance & urgent tumeround is required.	(27		1 1 1 1 1 1	HUD	X		X			XX	X							apany): Telk	KPUIN	カ1/モ/ン1	
OF CUS	NVIROLAE	Client Project N	AS130	PO No.:	Envirolab Services Quote No. :	Date results required:	Or choose: stam	Note: Inform Jab ma		ų	imun 1774a	runA	17		Â X X		X X X	XXX	XX	XX						Received by (company):	Print Name:	Date & Time:	Signature.
CHAIN					ebeld	31	picom	Fax: 49162.5888			Type of sample		WATER.											Red 2			BIO		
	•		SNF IERO	NFIELD	2150GU	NSW 225	NLONCOY	Fax: 496	rmation		Date		tile loi									1 1 1 1	11413			7	BENTE	Rom	600
		FINIKON	Project Mar. KIRSIN GREENFIEW	Sumpler KIRSTN GREENFIELD	Address: Suck MB, Level 2, 50 Glebelld	nejunonun	Email: KSYEENDEDE ENVICANCONP. COM	HOLDULU	Sample Information		Client Sample ID	112583	MWK	COIMU	FIMIN	IN MH	MINB	MM16	MW 106	MW 19	MILAUZO			TNN 10 +		Refineuished by (company): ENN	とのか	2	Ameend
		Gient:	Project Mgr.	Sampler. k	Address: V		Email: KOV	Phone: 4			Envirolab Sample ID		51	97		T	T		1	270	T		27	et		Relinquished	Print Name:	Date & Time:	Signature:

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

2/2

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

CERTIFICATE OF ANALYSIS

112983

Client: Environ PO Box 560 North Sydney NSW 2060

Attention: Kirsty Greenfield

Sample log in details:

 Your Reference:
 AS130383

 No. of samples:
 26 Waters

 Date samples received / completed instructions received
 11/07/14, 15/07/1/↓

 This report replaces the one dated 21/07/2014 due to changing of results between MW101 and MW102

 (ELS -3 and -4) for vTRH and sTRH as requested by Kirsty due to labelling error.

Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.*

Report Details:

 Date results requested by: / Issue Date:
 21/07/14
 / 22/07/14

 Date of Preliminary Report:
 None Issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

 Tests not covered by NATA are denoted with *.

Results Approved By:

Jacinta/Hurst

Laboratory Manager

VOCs in water			
Our Reference:	UNITS	112983-16	112983-26
Your Reference Date Sampled		MW105 10/07/2014	MW107 11/07/2014
Type of sample		Water	Water
Date extracted		16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014
Dichlorodifluoromethane	-	<10	<10
Chloromethane	µg/L	<10	<10
	µg/L		
Vinyl Chloride	µg/L	<10	<10
Bromomethane	µg/L	<10	<10
Chloroethane	µg/L	<10	<10
Trichlorofluoromethane	µg/L	<10	<10
1,1-Dichloroethene	µg/L	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1
1,1-dichloroethane	µg/L	<1	<1
Cis-1,2-dichloroethene	µg/L	1	<1
Bromochloromethane	µg/L	<1	<1
Chloroform	µg/L	5	<1
2,2-dichloropropane	µg/L	<1	<1
1,2-dichloroethane	µg/L	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1
1,1-dichloropropene	µg/L	<1	<1
Cyclohexane	µg/L	<1	<1
Carbon tetrachloride	µg/L	<1	<1
Benzene	µg/L	1	<1
Dibromomethane	µg/L	<1	<1
1,2-dichloropropane	µg/L	<1	<1
Trichloroethene	µg/L	<1	<1
Bromodichloromethane	µg/L	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1
Toluene	µg/L	<1	<1
1,3-dichloropropane	µg/L	<1	<1
Dibromochloromethane	µg/L	<1	<1
1,2-dibromoethane	μg/L	<1	<1
Tetrachloroethene	μg/L	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1
Chlorobenzene	µg/L	150	<1
Ethylbenzene	µg/L	<1	<1
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	µg/∟ µg/L	<1	<1
1,2,3-trichloropropane		<1	<1
r,z,s-monoropropane	µg/L	<1	<1

VOCs in water			
Our Reference:	UNITS	112983-16	112983-26
Your Reference		MW105	MW107
Date Sampled		10/07/2014	11/07/2014
Type of sample		Water	Water
Isopropylbenzene	μg/L	<1	<1
Bromobenzene	μg/L	<1	<1
n-propyl benzene	μg/L	<1	<1
2-chlorotoluene	µg/L	<1	<1
4-chlorotoluene	µg/L	<1	<1
1,3,5-trimethyl benzene	μg/L	<1	<1
Tert-butyl benzene	µg/L	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1
Sec-butyl benzene	µg/L	<1	<1
1,4-dichlorobenzene	µg/L	9	<1
4-isopropyl toluene	μg/L	<1	<1
1,2-dichlorobenzene	μg/L	<1	<1
n-butyl benzene	µg/L	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1
Hexachlorobutadiene	μg/L	<1	<1
1,2,3-trichlorobenzene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	101	97
Surrogate toluene-d8	%	88	86
Surrogate 4-BFB	%	103	99

vTRH in Water (C6-C9) NEPM						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-13
Your Reference		MW07	MW08	MW101	MW102	DUPA
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
TRHC6 - C9	µg/L	<10	<10	<10	18	22
TRHC6 - C 10	μg/L	<10	<10	<10	18	22
Surrogate Dibromofluoromethane	%	100	102	102	100	100
Surrogate toluene-d8	%	100	99	100	99	97
Surrogate 4-BFB	%	96	97	97	98	98

vTRH in Water (C6-C9) NEPM			
Our Reference:	UNITS	112983-16	112983-20
Your Reference		MW105	MW16
Date Sampled		10/07/2014	10/07/2014
Type of sample		Water	Water
Date extracted	-	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014
TRHC6 - C9	µg/L	240	<10
TRHC6 - C10	µg/L	240	<10
Surrogate Dibromofluoromethane	%	101	101
Surrogate toluene-d8	%	88	101
Surrogate 4-BFB	%	103	99

svTRH (C10-C40) in Water						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-13
Your Reference		MW07	MW08	MW101	MW102	DUPA
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
TRHC 10 - C14	µg/L	<50	<50	<50	<50	<50
TRHC 15 - C28	µg/L	<100	<100	<100	<100	<100
TRHC 29 - C36	µg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	µg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	123	105	101	113	125

svTRH (C10-C40) in Water			
Our Reference:	UNITS	112983-16	112983-20
Your Reference		MW105	MW16
Date Sampled		10/07/2014	10/07/2014
Type of sample		Water	Water
Date extracted	-	16/07/2014	16/07/2014
Date analysed	-	18/07/2014	17/07/2014
TRHC 10 - C 14	µg/L	180	<50
TRHC 15 - C28	µg/L	1,400	<100
TRHC29 - C36	µg/L	<100	<100
TRH>C10 - C16	µg/L	300	<50
TRH>C16 - C34	µg/L	1,200	<100
TRH>C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	137	92

PAHs in Water - Low Level						
Our Reference:	UNITS	112983-8	112983-9	112983-10	112983-11	112983-14
Your Reference		MW12	MW103	MW104	MW13	DUPB
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/201	16/07/201	16/07/201	16/07/201	16/07/201
Naphthalene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	0.1	<0.1	0.1
Pyrene	µg/L	<0.1	<0.1	0.2	<0.1	0.2
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	0.3
Benzo(a)pyrene	µg/L	<0.1	<0.1	0.1	<0.1	0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	0.1	<0.1	0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	0.1	<0.1	0.1
Benzo(a)pyrene TEQ	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	0.77	NIL(+)VE	0.97
Surrogate p-Terphenyl-d14	%	107	103	80	103	80

PAHs in Water - Low Level					
Our Reference:	UNITS	112983-15	112983-17	112983-20	112983-21
Your Reference		MW18	MW17	MW16	MW106
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water
Date extracted	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/201	16/07/201	16/07/201	16/07/201
Naphthalene	µg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	µg/L	<0.1	<0.1	<0.1	<0.1
Acenaphthene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluorene	µg/L	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1
Anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Fluoranthene	µg/L	<0.1	<0.1	<0.1	<0.1
Pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	µg/L	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	92	86	112	101

SVOC's in water UNITS 112983-16 112983-26 Your Reference:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Date Sampled Type of sample 10/07/2014 Water 11/07/2014 Water Date extracted - 16/07/2014 16/07/2014 Date analysed - 19/07/2014 19/07/2014 Phenol µg/L <10
Type of sampleWaterWaterDate extracted- $16/07/2014$ $16/07/2014$ Date analysed- $19/07/2014$ $19/07/2014$ Phenol $\mu g/L$ <10
Date extracted - 16/07/2014 16/07/2014 Date analysed - 19/07/2014 19/07/2014 Phenol $\mu g/L$ <10
Date analysed - $19/07/2014$ $19/07/2014$ Phenol $\mu g/L$ <10
Phenol $\mu g/L$ <10<10Bis (2-chloroethyl) ether $\mu g/L$ <10
Bis (2-chloroethyl) ether $\mu g/L$ <10 <10 2-Chlorophenol $\mu g/L$ <10 <10 1,3-Dichlorobenzene $\mu g/L$ <10 <10 1,4-Dichlorobenzene $\mu g/L$ <10 <10 2-Methylphenol $\mu g/L$ <10 <10 2-Methylphenol $\mu g/L$ <10 <10 1,2-Dichlorobenzene $\mu g/L$ <10 <10 1,2-Dichlorobenzene $\mu g/L$ <10 <10 $3/4$ -Methylphenol $\mu g/L$ <20 <20 N-nitrosodi-n-propylamine $\mu g/L$ <10 <10 Hexachloroethane $\mu g/L$ <10 <10 Nitrobenzene $\mu g/L$ <10 <10 $3/4$ -Methylphenol μg
2-Chlorophenol μ g/L<10<101,3-Dichlorobenzene μ g/L<10
1,3-Dichlorobenzene μ g/L<10<101,4-Dichlorobenzene μ g/L<10
$1,4$ -Dichlorobenzene $\mu g/L$ <10 <10 2 -Methylphenol $\mu g/L$ <10 <10 $1,2$ -Dichlorobenzene $\mu g/L$ <10 <10 bis-(2-Chloroisopropyl) ether $\mu g/L$ <20 <20 $3/4$ -Methylphenol $\mu g/L$ <20 <20 N-nitrosodi-n-propylamine $\mu g/L$ <10 <10 Hexachloroethane $\mu g/L$ <10 <10 Nitrobenzene $\mu g/L$ <10 <10 $2,4$ -Dimethylphenol $\mu g/L$ <10 <10 $2,4$ -Dirothorophenol $\mu g/L$ <10 <10 $2,4$ -Dichlorophenol $\mu g/L$ <10 <10 $2,4$ -Dichlorophenol $\mu g/L$ <10 <10 $1,2,4$ -Trichlorobenzene $\mu g/L$ <10 <10 4 -Chloroaniline $\mu g/L$ <10 <10 Hexachlorobutadiene $\mu g/L$ <10 <10
2-Methylphenol $\mu g/L$ <10<101,2-Dichlorobenzene $\mu g/L$ <10
1,2-Dichlorobenzene $\mu g/L$ <10<10bis-(2-Chloroisopropyl) ether $\mu g/L$ <10
bis-(2-Chloroisopropyl) ether $\mu g/L$ <10<103/4-Methylphenol $\mu g/L$ <20
$3/4$ -Methylphenol $\mu g/L$ <20 <20 N-nitrosodi-n-propylamine $\mu g/L$ <10 <10 Hexachloroethane $\mu g/L$ <10 <10 Nitrobenzene $\mu g/L$ <10 <10 Isophorone $\mu g/L$ <10 <10 2,4-Dimethylphenol $\mu g/L$ <10 <10 2-Nitrophenol $\mu g/L$ <10 <10 bis (2-Chloroethoxy) methane $\mu g/L$ <10 <10 1,2,4-Trichlorobenzene $\mu g/L$ <10 <10 Naphthalene $\mu g/L$ <10 <10 4-Chloroaniline $\mu g/L$ <10 <10 Hexachlorobutadiene $\mu g/L$ <10 <10 Hexachlorocyclopentadiene $\mu g/L$ <10 <10 Hexachlorocyclopentadiene $\mu g/L$ <10 <10
N-nitrosodi-n-propylamine $\mu g/L$ <10<10Hexachloroethane $\mu g/L$ <10
Hexachloroethane $\mu g/L$ <10<10Nitrobenzene $\mu g/L$ <10
Nitrobenzene $\mu g/L$ <10<10Isophorone $\mu g/L$ <10
Isophorone $\mu g/L$ <10<102,4-Dimethylphenol $\mu g/L$ <10
2,4-Dimethylphenol $\mu g/L$ <10<102-Nitrophenol $\mu g/L$ <10
2-Nitrophenol $\mu g/L$ <10<10bis (2-Chloroethoxy) methane $\mu g/L$ <10
bis (2-Chloroethoxy) methane μ g/L<10<102,4-Dichlorophenol μ g/L<10
2,4-Dichlorophenol μg/L <10
1,2,4-Trichlorobenzeneµg/L<10<10Naphthaleneµg/L<10
Naphthaleneµg/L<10<104-Chloroanilineµg/L<10
4-Chloroanilineμg/L<10<10Hexachlorobutadieneμg/L<10
Hexachlorobutadieneµg/L<10<102-Methylnaphthaleneµg/L<10
2-Methylnaphthaleneμg/L<10<10Hexachlorocyclopentadieneμg/L<10
Hexachlorocyclopentadiene µg/L <10 <10
2,4,6-Trichlorophenol µg/L <10 <10
2,4,5-Trichlorophenol µg/L <10 <10
2-Chloronaphthalene µg/L <10 <10
2-Nitroaniline µg/L <10 <10
Dimethyl phthalate µg/L <10 <10
2,6-Dinitrotoluene µg/L <10 <10
Acenaphthylene µg/L <10 <10
3-Nitroaniline µg/L <10 <10
Acenaphthene µg/L <10 <10
2,4-Dinitrophenol µg/L <100 <100
4-Nitrophenol µg/L <100 <100
Dibenzofuran µg/L <10 <10
Diethylphthalate µg/L <10 <10
4-Chlorophenylphenylether µg/L <10 <10
4-Nitroaniline µg/L <10 <10
Fluorene µg/L <10 <10
2-methyl-4,6-dinitrophenol µg/L <100 <100
Azobenzene µg/L <10 <10
SVOC's in water

Our Reference: Your Reference
Date Sampled
Type of sample
4-Bromophenylphenylether
Hexachlorobenzene
Pentachlorophenol
Phenanthrene
Anthracene
Carbazole
Di-n-butylphthalate
Fluoranthene
Pyrene
Butylbenzylphthalate
Bis(2-ethylhexyl) phthalate
Benzo(a)anthracene
Chrysene
Di-n-octylphthalate
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Indeno(1,2,3-c,d)pyrene
Dibenzo(a,h)anthracene
Benzo(g,h,i)perylene
Ethylmethanesulfonate
Aniline
Pentachloroethane
Benzyl alcohol
Acetophenone
N-nitrosomorpholine
N-nitrosopiperidine
2,6-Dichlorophenol
Hexachloropropene-1
N-nitroso-n-butylamine
Safrole
1,2,4,5-Tetrachlorobenzene
Trans-iso-safrole
1,3-Dinitrobenzene
Pentachlorobenzene
1-Naphthylamine
2,3,4,6-Tetrachlorophenol
2-Naphthylamine
5-Nitro-o-toluidine
Diphenylamine
Phenacetin
Pentachloronitrobenzene
Dinoseb

SVOC's in water			
Our Reference:	UNITS	112983-16	112983-26
Your Reference		MW105 10/07/2014	MW107 11/07/2014
Date Sampled Type of sample		10/07/2014 Water	Water
Methapyrilene	µg/L	<10	<10
p-Dimethylaminoazobenzene	µg/L	<10	<10
2-Acetylaminofluorene	µg/L	<10	<10
7,12-Dimethylbenz(a)anthracene	µg/L	<10	<10
3-Methylcholanthrene	µg/L	<10	<10
a-BHC	µg/L	<10	<10
b-BHC	µg/L	<10	<10
g-BHC	µg/L	<10	<10
d-BHC	µg/L	<10	<10
Heptachlor	µg/L	<10	<10
Aldrin	µg/L	<10	<10
Heptachlor Epoxide	µg/L	<10	<10
g-Chlordane	µg/L	<10	<10
a-Chlordane	µg/L	<10	<10
Endosulfan I	µg/L	<10	<10
p,p'-DDE	µg/L	<10	<10
Dieldrin	µg/L	<10	<10
Endrin	µg/L	<10	<10
p,p'-DDD	µg/L	<10	<10
Endosulfan II	µg/L	<10	<10
Endrin Aldehyde	µg/L	<10	<10
p,p'-DDT	µg/L	<10	<10
Endosulfan Sulphate	µg/L	<10	<10
Surrogate 2-fluorophenol	%	57	53
Surrogate Phenol-de	%	42	35
Surrogate Nitrobenzene-ds	%	91	87
Surrogate 2-fluorobiphenyl	%	91	89
Surrogate 2,4,6-Tribromophenol	%	107	88
Surrogate p-Terphenyl-d14	%	108	102

HM in water - dissolved						
Our Reference:	UNITS	112983-1	112983-2	112983-3	112983-4	112983-5
Your Reference		MW07	MW08	MW101	MW102	MW10
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	6	<1	2	1	3
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	1	<1	<1	3
Copper-Dissolved	µg/L	<1	<1	4	2	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	2	<1	9	2	24
Zinc-Dissolved	µg/L	3	<1	10	4	9
Aluminium-Dissolved	µg/L	<10	1,200	<10	<10	2,900
HM in water - dissolved Our Reference:	UNITS	112983-6	112983-7	112983-8	112983-9	112983-10
Your Reference	00013	MW09	MW11	MW12	MW103	MW104
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	μg/L	2	1	<1	1	2
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	0.2	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	6
Copper-Dissolved	µg/L	1	2	<1	<1	3
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	14	6	15	18	5
Zinc-Dissolved	μg/L	1	2	8	92	8
Aluminium-Dissolved	μg/L	30	390	<10	7,700	1,300

HM in water - dissolved						
Our Reference:	UNITS	112983-11	112983-12	112983-13	112983-14	112983-15
Your Reference		MW13	MW14	DUPA	DUPB	MW18
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	µg/L	2	2	3	1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	6	<1	11	6	<1
Copper-Dissolved	µg/L	<1	3	3	3	<1
Lead-Dissolved	µg/L	<1	<1	4	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	7	6	5	<1
Zinc-Dissolved	µg/L	2	7	14	8	4
Aluminium-Dissolved	µg/L	2,500	<10	8,900	1,300	750
HM in water - dissolved						
Our Reference:	UNITS	112983-16	112983-17	112983-18	112983-19	112983-20
Your Reference		MW105	MW17	MWA	MWB	MW16
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	µg/L	1	12	1	5	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	0.2	0.2	<0.1
Chromium-Dissolved	µg/L	2	4	1	2	<1
Copper-Dissolved	µg/L	1	1	<1	3	2
Lead-Dissolved	µg/L	<1	1	1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	4	8	2	7	<1
Zinc-Dissolved	µg/L	4	6	64	13	1
Aluminium-Dissolved	µg/L	20	3,800	630	1,400	<10

HM in water - dissolved						
Our Reference:	UNITS	112983-21	112983-22	112983-23	112983-24	112983-25
Your Reference		MW106	MW19	MW20	MW06	MW15
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	11/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Date analysed	-	16/07/2014	16/07/2014	16/07/2014	16/07/2014	16/07/2014
Arsenic-Dissolved	µg/L	2	8	2	1	2
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	1	2	<1	<1
Copper-Dissolved	µg/L	5	<1	<1	1	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	2	7	4	20	9
Zinc-Dissolved	µg/L	15	2	6	16	2
Aluminium-Dissolved	µg/L	50	680	1,500	180	180

HM in water - dissolved		
Our Reference:	UNITS	112983-26
Your Reference		MW107
Date Sampled		11/07/2014
Type of sample		Water
Date prepared	-	16/07/2014
Date analysed	-	16/07/2014
Arsenic-Dissolved	µg/L	<1
Cadmium-Dissolved	µg/L	<0.1
Chromium-Dissolved	µg/L	2
Copper-Dissolved	μg/L	<1
Lead-Dissolved	μg/L	<1
Mercury-Dissolved	µg/L	<0.05
Nickel-Dissolved	µg/L	2
Zinc-Dissolved	µg/L	7
Aluminium-Dissolved	µg/L	5,000

Missellenseus heerenies						
Miscellaneous Inorganics Our Reference:	UNITS	110000 1	110000 0	110000 0	110000 1	110000 5
	UNITS	112983-1 MW07	112983-2	112983-3	112983-4	112983-5 MW10
Your Reference		-	MW08	MW101	MW102	_
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	1.4	6.7	0.46	3.2	2.1
· · · · ·				[[[
Miscellaneous Inorganics		110000 0	110000 7	110000 0	110000 0	110000 10
Our Reference:	UNITS	112983-6	112983-7	112983-8	112983-9	112983-10
Your Reference		MW09	MW11	MW12	MW103	MW104
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	07/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	0.56	8.3	0.22	12	13
· · · · ·					[[
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-11	112983-12	112983-13	112983-14	112983-15
Your Reference		MW13	MW14	DUPA	DUPB	MW18
Date Sampled		07/07/2014	07/07/2014	07/07/2014	07/07/2014	10/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	40	0.85	3.4	14	17
Miscellaneous Inorganics						
Our Reference:	UNITS	112983-16	112983-17	112983-18	112983-19	112983-20
Your Reference	UNITS	MW105	MW17	MWA	MWB	MW16
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	10/07/2014
Type of sample						
		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	1.1	1.1	8.2	12	2.3
Minneller						
Miscellaneous Inorganics		440000 04	440000 00	440000 00	440000 04	440000 07
Our Reference:	UNITS	112983-21	112983-22	112983-23	112983-24	112983-25
Your Reference		MW106	MW19	MW20	MW06	MW15
Date Sampled		10/07/2014	10/07/2014	10/07/2014	10/07/2014	11/07/2014
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Date analysed	-	17/07/2014	17/07/2014	17/07/2014	17/07/2014	17/07/2014
Fluoride, F	mg/L	7.4	0.37	0.67	0.22	2.7
L	-	1	1	1	1	1

Miscellaneous Inorganics		
Our Reference:	UNITS	112983-26
Your Reference		MW107
Date Sampled		11/07/2014
Type of sample		Water
Date prepared	-	17/07/2014
Date analysed	-	17/07/2014
Fluoride, F	mg/L	10

MethodID	Methodology Summary
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA 22nd ED, 4500-F-C.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
	UNITS	FUL		Didi IK	Sm#	Duplicate results	Spike SITI#	Spike % Recovery
VOCs in water						Base II Duplicate II %RPD		-
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/0/7/2014
Dichlorodifluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	[NT]	[NT]	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	83%
1,1-dichloroethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chloroform	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	84%
2,2-dichloropropane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,2-dichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	84%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	83%
1,1-dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Cyclohexane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Carbon tetrachloride	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Benzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromomethane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1.2-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Trichloroethene	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	91%
Bromodichloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	86%
trans-1,3- dichloropropene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2-trichloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,3-dichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Dibromochloromethane	µg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	88%
1,2-dibromoethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Tetrachloroethene	μg/L	1	Org-013	<1	[NT]	[NT]	LCS-W1	78%
1,1,1,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Chlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Ethylbenzene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
Bromoform	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
m+p-xylene	µg/L	2	Org-013	~2	[NT]	[NT]	[NR]	[NR]
Styrene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
1,1,2,2- tetrachloroethane	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]
o-xylene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

Client Reference: AS130383											
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VOCs in water						Base II Duplicate II % RPD					
1,2,3-trichloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Isopropylbenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Bromobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
n-propyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
2-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
4-chlorotoluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Tert-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,3-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Sec-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,4-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
4-isopropyl toluene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
n-butyl benzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
Hexachlorobutadiene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]			
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	95	[NT]	[NT]	LCS-W1	93%			
Surrogate toluene-d8	%		Org-013	89	[NT]	[NT]	LCS-W1	87%			
Surrogate 4-BFB	%		Org-013	98	[NT]	[NT]	LCS-W1	104%			

QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
vTRH in Water (C6-C9)	UNITO			Diank	Sm#	Base II Duplicate II % RPD	Spike Shi#	Recovery
NEPM								
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
TRHC6 - C9	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
TRHC6 - C10	µg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	93	[NT]	[NT]	LCS-W1	103%
Surrogate toluene-d8	%		Org-013	87	[NT]	[NT]	LCS-W1	87%
Surrogate 4-BFB	%		Org-013	104	[NT]	[NT]	LCS-W1	102%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH (C10-C40) in Water					Cirin,	Base II Duplicate II % RPD		Receivery
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	100%
TRHC 15 - C28	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRHC 29 - C 36	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	100%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	102%
TRH>C34 - C40	μg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	79%
Surrogate o-Terphenyl	۳9'- %	100	Org-003	125	[NT]	[NT]	LCS-W1	88%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
QUALITICONINOL	UNITO	l Q∟		Dial IK	Sm#	Duplicate results	Opike Off#	Recovery
PAHs in Water - Low Level						Base II Duplicate II % RPD		
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Naphthalene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	83%
Acenaphthylene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	86%
Phenanthrene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	86%
Anthracene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	85%
Pyrene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	85%

		Clie	ent Reference	e: A	S130383			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water - Low Level						Base II Duplicate II % RPD		
Benzo(a)anthracene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	84%
Benzo(b+k)fluoranthene	µg/L	0.2	Org-012 subset	<0.2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	LCS-W1	95%
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	0.1	Org-012 subset	<0.1	[NT]	[NT]	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	87	[NT]	[NT]	LCS-W1	113%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
SVOC's in water					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			16/07/2 014	[NT]	[NT]	LCS-W1	16/07/2014
Date analysed	-			19/07/2 014	[NT]	[NT]	LCS-W1	19/07/2014
Phenol	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	31%
Bis (2-chloroethyl) ether	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Chlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	82%
1,3-Dichlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,4-Dichlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	53%
2-Methylphenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2-Dichlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
bis-(2-Chloroisopropyl) ether	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3/4-Methylphenol	µg/L	20	Org-012	<20	[NT]	[NT]	[NR]	[NR]
N-nitrosodi-n- propylamine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachloroethane	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Nitrobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Isophorone	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4-Dimethylphenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Nitrophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
bis (2-Chloroethoxy) methane	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4-Dichlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2,4-Trichlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Naphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4-Chloroaniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachlorobutadiene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Methylnaphthalene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	S130383 Duplicate	Duplicate results	Spike Sm#	Spike %
		, se			Sm#			Recovery
SVOC's in water						Base II Duplicate II % RPD		
Hexachlorocyclopentadi ene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4,6-Trichlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,4,5-Trichlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Chloronaphthalene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Nitroaniline	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dimethylphthalate	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	118%
2,6-Dinitrotoluene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acenaphthylene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3-Nitroaniline	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	60%
2,4-Dinitrophenol	µg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
4-Nitrophenol	µg/L	100	Org-012	<100	[NT]	[NT]	LCS-W1	31%
Dibenzofuran	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Diethylphthalate	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	66%
4-	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Chlorophenylphenylether								
4-Nitroaniline	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-methyl-4,6- dinitrophenol	µg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
Azobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
4- Bromophenylphenylether	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachlorophenol	µg/L	100	Org-012	<100	[NT]	[NT]	[NR]	[NR]
Phenanthrene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Anthracene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Carbazole	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Di-n-butylphthalate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pyrene	µg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	68%
Butylbenzylphthalate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Bis(2-ethylhexyl) phthalate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(a)anthracene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Di-n-octylphthalate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(b)fluoranthene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(k)fluoranthene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Indeno(1,2,3-c,d)pyrene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Ethylmethanesulfonate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Aniline	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachloroethane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	S130383 Duplicate	Duplicate results	Spike Sm#	Spike %
	0.1110		METHOD	Diarite	Sm#		opino orim	Recovery
SVOC's in water						Base II Duplicate II % RPD		
Benzyl alcohol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Acetophenone	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitrosomorpholine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitrosopiperidine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,6-Dichlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Hexachloropropene-1	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
N-nitroso-n-butylamine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Safrole	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,2,4,5- Tetrachlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Trans-iso-safrole	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1,3-Dinitrobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachlorobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
1-Naphthylamine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2,3,4,6- Tetrachlorophenol	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Naphthylamine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
5-Nitro-o-toluidine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Diphenylamine	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Phenacetin	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Pentachloronitrobenzene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dinoseb	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Methapyrilene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p- Dimethylaminoazobenze ne	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
2-Acetylaminofluorene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
7,12-Dimethylbenz(a) anthracene	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
3-Methylcholanthrene	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
b-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
d-BHC	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Heptachlor	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Aldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	97%
Heptachlor Epoxide	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
g-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
a-Chlordane	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan I	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDE	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Dieldrin	μg/L	10	Org-012	<10	[NT]	[NT]	LCS-W1	87%
Endrin	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDD	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endosulfan II	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Endrin Aldehyde	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
p,p'-DDT	μg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]

		Clie	ent Referenc	e: A	S130383			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
SVOC's in water						Base II Duplicate II % RPD		
Endosulfan Sulphate	µg/L	10	Org-012	<10	[NT]	[NT]	[NR]	[NR]
Surrogate 2-fluorophenol	%		Org-012	71	[NT]	[NT]	LCS-W1	63%
Surrogate Phenol-d6	%		Org-012	55	[NT]	[NT]	LCS-W1	48%
<i>Surrogate</i> Nitrobenzene-d₅	%		Org-012	86	[NT]	[NT]	LCS-W1	83%
Surrogate 2- fluorobiphenyl	%		Org-012	92	[NT]	[NT]	LCS-W1	92%
Surrogate 2,4,6- Tribromophenol	%		Org-012	86	[NT]	[NT]	LCS-W1	106%
S <i>urrogate p</i> -Terphenyl- d14	%		Org-012	105	[NT]	[NT]	LCS-W1	110%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
HM in water - dissolved						Base II Duplicate II % RPD		
Date prepared	-			16/07/2 014	112983-3	16/07/2014 16/07/2014	LCS-W2	16/07/2014
Date analysed	-			16/07/2 014	112983-3	16/07/2014 16/07/2014	LCS-W2	16/07/2014
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	2 2 RPD:0	LCS-W2	110%
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	112983-3	<0.1 <0.1	LCS-W2	102%
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	<1 <1	LCS-W2	109%
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	4 4 RPD:0	LCS-W2	107%
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	<1 <1	LCS-W2	102%
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	112983-3	<0.05 [N/T]	LCS-W2	100%
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	9 9 RPD:0	LCS-W2	111%
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	112983-3	10 9 RPD:11	LCS-W2	111%
Aluminium-Dissolved	µg/L	10	Metals-022 ICP-MS	<10	112983-3	<10 <10	LCS-W2	112%

			ent Reference	1	S130383	D.	nlianta nanult-	Calify Care II	Call (- 0/
QUALITY CONTROL Miscellaneous Inorganics	UNITS	PQL	METHOD	Blank	Duplicate Sm#		plicate results se II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Date prepared	-			17/07/2	112983-1	17	7/07/2014 17/07/2014	LCS-W1	17/07/20
Date analysed	-			014 17/07/2 014	112983-1	17	7/07/2014 17/07/2014	LCS-W1	17/07/20
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	112983-1		1.4 1.4 RPD:0	LCS-W1	102%
QUALITYCONTROL	UNITS	3	Dup.Sm#		Duplicate		Spike Sm#	Spike % Reco	overy
HM in water - dissolved				Base+I	Duplicate + %RP	D			
Date prepared	-	1	12983-13	16/07/2	2014 16/07/201	4	LCS-3	16/07/201	4
Date analysed	-	1	12983-13	16/07/2	2014 16/07/201	4	LCS-3	16/07/201	4
Arsenic-Dissolved	µg/L	1	12983-13	3	3 RPD:0		LCS-3	99%	
Cadmium-Dissolved	µg/L	1	12983-13	.	<0.1 <0.1		LCS-3	105%	
Chromium-Dissolved	µg/L	1	12983-13	11	11 RPD:0		LCS-3	97%	
Copper-Dissolved	µg/L	1	12983-13	3 3 RPD:0		LCS-3	96%		
Lead-Dissolved	µg/L	1	12983-13	4 4 RPD:0		LCS-3	104%		
Mercury-Dissolved	µg/L	1	12983-13	<0.05 [N/T]		LCS-3	108%		
Nickel-Dissolved	µg/L	1	12983-13	6 5 RPD:18		LCS-3	99%		
Zinc-Dissolved	µg/L	1	12983-13	14 15 RPD:7		LCS-3	99%		
Aluminium-Dissolved	µg/L	1	12983-13	8900	9000 RPD:1		LCS-3	96%	
QUALITY CONTROL Miscellaneous Inorganics	UNITS	6	Dup. Sm#	Base+I	Duplicate Duplicate+%RP	۶D	Spike Sm#	Spike % Reco	overy
Date prepared	-	1	12983-11	17/07/2	2014 17/07/201	4	112983-2	17/07/2014	
Date analysed	-	1	12983-11	17/07/2	2014 17/07/201	4	112983-2	17/07/201	4
Fluoride, F	mg/L	. 1	12983-11	40	39 RPD:3		112983-2	89%	
QUALITY CONTROL HM in water - dissolved	UNITS	3	Dup. Sm#	Base+I	Duplicate Duplicate+%RP	۶D	Spike Sm#	Spike % Reco	overy
Date prepared	-		12983-23	16/07/2	2014 16/07/201	4	112983-4	16/07/201	4
Date analysed	-	1	12983-23	16/07/2	2014 16/07/201	4	112983-4	16/07/201	4
Arsenic-Dissolved	µg/L	1	12983-23	2	2 RPD:0		112983-4	96%	
Cadmium-Dissolved	µg/L	1	12983-23		<0.1 <0.1		112983-4	102%	
Chromium-Dissolved	µg/L	1	12983-23	2	2 RPD:0		112983-4	93%	
Copper-Dissolved	µg/L	1	12983-23		<1 <1		112983-4	91%	
Lead-Dissolved	µg/L	1	12983-23		<1 <1		112983-4	102%	
Nickel-Dissolved	µg/L	1	12983-23	4	4 RPD:0		112983-4	94%	
Zinc-Dissolved	µg/L	1	12983-23	6	6 RPD:0		112983-4	97%	
Aluminium-Dissolved	µg/L	1	12983-23	1500	1400 RPD:7		112983-4	96%	

		Client Reference	e: AS130383		
QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	LCS-W2	17/07/2014
Date analysed	-	[NT]	[NT]	LCS-W2	17/07/2014
Fluoride, F	mg/L	[NT]	[NT]	LCS-W2	104%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-1	16/07/2014 16/07/2014	112983-14	16/07/2014
Date analysed	-	112983-1	16/07/2014 16/07/2014	112983-14	16/07/2014
Arsenic-Dissolved	µg/L	112983-1	6 [N/T]	112983-14	97%
Cadmium-Dissolved	µg/L	112983-1	<0.1 [N/T]	112983-14	100%
Chromium-Dissolved	µg/L	112983-1	<1 [N/T]	112983-14	91%
Copper-Dissolved	µg/L	112983-1	<1 [N/T]	112983-14	87%
Lead-Dissolved	µg/L	112983-1	<1 [N/T]	112983-14	100%
Mercury-Dissolved	µg/L	112983-1	<0.05 <0.05	[NR]	[NR]
Nickel-Dissolved	µg/L	112983-1	2 [N/T]	112983-14	90%
Zinc-Dissolved	µg/L	112983-1	3 [N/T]	112983-14	94%
Aluminium-Dissolved	µg/L	112983-1	<10 [N/T]	112983-14	99%
QUALITY CONTROL Miscellaneous Inorganics	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	[NT]	[NT]	112983-22	17/07/2014
Date analysed	-	[NT]	[NT]	112983-22	17/07/2014
Fluoride, F	mg/L	[NT]	[NT]	112983-22	97%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-10	16/07/2014 16/07/2014	112983-2	16/07/2014
Date analysed	-	112983-10	16/07/2014 16/07/2014	112983-2	16/07/2014
Mercury-Dissolved	µg/L	112983-10	<0.05 <0.05	112983-2	104%
QUALITY CONTROL HM in water - dissolved	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	112983-20	16/07/2014 16/07/2014	112983-21	16/07/2014
Date analysed	-	112983-20	16/07/2014 16/07/2014	112983-21	16/07/2014
Mercury-Dissolved	µg/L	112983-20	<0.05 <0.05	112983-21	104%

Report Comments:

Asbestos ID was analysed by Approved Identifier: Asbestos ID was authorised by Approved Signatory: Not applicable for this job Not applicable for this job

INS: Insufficient sample for this test NA: Test not required <: Less than PQL: Practical Quantitation Limit RPD: Relative Percent Difference >: Greater than NT: Not tested NA: Test not required LCS: Laboratory Control Sample

Quality Control Definitions

Blank: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike: Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

X Please serve to the Son Same analysis as DUPB metall sample Provide as much information about the a Place filk sample as you can Infrolation Commenta E-mail: ahie@envirolabservices.com.au (if applicable) Samples Raceived: Cool or Ambient (circle one) 12 Ashley St, Chatswood, NSW, 2067 fransported by: Hand delivered / courier Sol Bar 1:30p hilthi (770H **Envirolab Services** Phone: 02 9910 6200 02 9910 6201 lemperature Rocieved at: **Contact: Alleen Hie** Telephone:+61-2-8784 8555 Environmental Division ES1415361 Recent by Fight Work Order Sydney Fax: Tests Regulred Swappy **CHAIN OF CUSTODY - Client** vote: Intom to n advance f urgent tumeround is required -0000 Or choose standard) 1 day / 2 day / 3 day Cerit **ENVIROLAB SERVICES** SUZ Client Project Name and Number: ASI30383 ANZECC) PAH Ś Envirolati Services Quote No. : Hgt Received by (company): Date results required: spironA uncherge soplies 지기기 생donte & Time: Print Name: Signature: PO No.: sman 8 orm: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1. Type of sample mail: KSREDIVELDE CM/100/CND+COM M 3114 LUATER "Surle MB, Level 21, 50 Clebe Rd The Junchon NSW 2251 Fau: 49162 5888 Z Я OBUNDAD Date sampled MINT MUT KIRSTN GREENFIELD 4 itsom THE REST OREDNEID ₹ S Staple information してのとう **Client Sample ID** 12983. ć THAT START telimquistied by (company): / Z KS N 13 DUPA 14 DUPB 14 DUPB1 ENVIRON **MWIQ3** MWIDH M NO7 MW09 **MMU 02 D**WID **MMI3** MINOS MINIO **JNNI MW12** その NWIL Z Print Name: Date & Time: Envholats Sample ID Signature: ddress Sient: N 9 ŝ. ¢ g 2 ユ

12

Θ

	CER	RTIFICATE OF ANALYSIS	
Work Order	ES1415361	Page	: 1 of 5
Client	ENVIRON	Laboratory	: Environmental Division Sydney
Contact	: MS KIRSTY GREENFIELD	Contact	: Client Services
Address	: PO Box 435	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	THE JUNCTION NSW 2291		
E-mail	: kgreenfield@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 4962 5444	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 4962 5888	Facsimile	: +61-2-8784 8500
Project	: AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Order number	:		
C-O-C number	:	Date Samples Received	: 14-JUL-2014
Sampler	: KG	Issue Date	: 21-JUL-2014
Site	:		
		No. of samples received	: 1
Quote number	: SY/433/13	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

ΝΑΤΑ	NATA Accredited Laboratory 825	Signatories This document has been electronically carried out in compliance with procedures sp		ndicated below. Electronic signing has been
NAIA	ISO/IEC 17025.	Signatories	Position	Accreditation Category
WORLD RECOGNISED		Ankit Joshi Celine Conceicao Pabi Subba	Inorganic Chemist Senior Spectroscopist Senior Organic Chemist	Sydney Inorganics Sydney Inorganics Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 PHONE +61-2-8784 8555 Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	: AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

 Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page	: 3 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	AS130383

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	DUP B1	 	
	Cli	ent sampli	ng date / time	09-JUL-2014 15:00	 	
Compound	CAS Number	LOR	Unit	ES1415361-001	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	41.6	 	
Arsenic	7440-38-2	0.001	mg/L	0.008	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.048	 	
Copper	7440-50-8	0.001	mg/L	0.007	 	
Nickel	7440-02-0	0.001	mg/L	0.020	 	
Lead	7439-92-1	0.001	mg/L	0.008	 	
Zinc	7440-66-6	0.005	mg/L	0.047	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK040P: Fluoride by PC Titrator						
Fluoride	16984-48-8	0.1	mg/L	15.4	 	
EP075(SIM)B: Polynuclear Aromatic Hydro	ocarbons					
Naphthalene	91-20-3	0.2	µg/L	<0.2	 	
Acenaphthylene	208-96-8	0.2	µg/L	<0.2	 	
Acenaphthene	83-32-9	0.2	µg/L	<0.2	 	
Fluorene	86-73-7	0.2	µg/L	<0.2	 	
Phenanthrene	85-01-8	0.2	µg/L	<0.2	 	
Anthracene	120-12-7	0.2	µg/L	<0.2	 	
Fluoranthene	206-44-0	0.2	µg/L	<0.2	 	
Pyrene	129-00-0	0.2	µg/L	<0.2	 	
Benz(a)anthracene	56-55-3	0.2	µg/L	<0.2	 	
Chrysene	218-01-9	0.2	µg/L	<0.2	 	
Benzo(b+j)fluoranthene	205-99-2	0.2	µg/L	<0.2	 	
Benzo(k)fluoranthene	207-08-9	0.2	µg/L	<0.2	 	
Benzo(a)pyrene	50-32-8	0.2	µg/L	<0.2	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.2	µg/L	<0.2	 	
Dibenz(a.h)anthracene	53-70-3	0.2	µg/L	<0.2	 	
Benzo(g.h.i)perylene	191-24-2	0.2	µg/L	<0.2	 	
[^] Benzo(a)pyrene TEQ (zero)		0.2	µg/L	<0.2	 	
EP075(SIM)S: Phenolic Compound Surrog	gates					
Phenol-d6	13127-88-3	0.1	%	27.6	 	
2-Chlorophenol-D4	93951-73-6	0.1	%	50.6	 	

Page	: 4 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	: AS130383

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		DUP B1						
	Client sampling date / time			09-JUL-2014 15:00					
Compound	CAS Number	LOR	Unit	ES1415361-001					
EP075(SIM)S: Phenolic Compound S	P075(SIM)S: Phenolic Compound Surrogates - Continued								
2.4.6-Tribromophenol	118-79-6	0.1	%	63.6					
EP075(SIM)T: PAH Surrogates									
2-Fluorobiphenyl	321-60-8	0.1	%	51.7					
Anthracene-d10	1719-06-8	0.1	%	68.5					
4-Terphenyl-d14	1718-51-0	0.1	%	65.8					

Page	5 of 5
Work Order	ES1415361
Client	ENVIRON
Project	AS130383

Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surro	gates			
Phenol-d6	13127-88-3	10.0	44	
2-Chlorophenol-D4	93951-73-6	14	94	
2.4.6-Tribromophenol	118-79-6	17	125	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	20	104	
Anthracene-d10	1719-06-8	27.4	113	
4-Terphenyl-d14	1718-51-0	32	112	

QUALITY CONTROL REPORT

Work Order	ES1415361	Page	: 1 of 5
Client	ENVIRON	Laboratory	: Environmental Division Sydney
Contact	: MS KIRSTY GREENFIELD	Contact	Client Services
Address	EPO Box 435 THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: kgreenfield@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	+61 02 4962 5444	Telephone	+61-2-8784 8555
Facsimile	: +61 02 4962 5888	Facsimile	: +61-2-8784 8500
Project	: AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 14-JUL-2014
Sampler	: KG	Issue Date	: 21-JUL-2014
Order number	:		
		No. of samples received	: 1
Quote number	: SY/433/13	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

NATA Accredited Signatories

Laboratory 825 This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been carried out ir compliance with procedures specified in 21 CFR Part 11.

Accredited for	Signatories	Position	Accreditation Category
compliance with ISO/IEC 17025.	Ankit Joshi	Inorganic Chemist	Sydney Inorganics
130/IEC 17025.	Celine Conceicao	Senior Spectroscopist	Sydney Inorganics
	Pabi Subba	Senior Organic Chemist	Sydney Organics

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500 Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	: AS130383

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

= Indicates failed QC

Page	: 3 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	: AS130383

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR:-No Limit; Result between 10 and 20 times LOR:-0% - 50%; Result > 20 times LOR:-0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 3543302)							
ES1415322-015	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.005	0.001	126	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.003	0.003	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.022	0.019	14.0	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	3.08	3.01	2.1	0% - 20%
ES1415459-001 And	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.009	0.009	0.0	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.006	0.006	0.0	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.008	18.7	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.62	0.60	2.4	0% - 20%
G035F: Dissolved	Mercury by FIMS (QC L	_ot: 3543300)							
ES1415309-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES1415309-011	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
K040P: Fluoride by	y PC Titrator (QC Lot: 3	3541970)							
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	0.1	mg/L	15.4	15.4	0.0	0% - 20%
ES1415432-009	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	1.3	1.2	0.0	0% - 50%

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG020F: Dissolved Metals by ICP-MS (QCLot: 35	43302)									
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	98.0	78	118		
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	95.8	80	118		
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.6	82	112		
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	99.4	81	113		
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	95.9	79	113		
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.3	81	113		
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	96.8	81	115		
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	94.9	80	116		
EG035F: Dissolved Mercury by FIMS (QCLot: 354	13300)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.010 mg/L	89.2	78	114		
EK040P: Fluoride by PC Titrator (QCLot: 3541970))									
EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	5.0 mg/L	102	75	119		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbor	ns (QCLot: 3540960)									
EP075(SIM): Naphthalene	91-20-3	0.2	µg/L	<1.0	20 µg/L	85.6	58.6	119		
EP075(SIM): Acenaphthylene	208-96-8	0.2	µg/L	<1.0	20 µg/L	85.2	63.6	114		
EP075(SIM): Acenaphthene	83-32-9	0.2	µg/L	<1.0	20 µg/L	86.0	62.2	113		
EP075(SIM): Fluorene	86-73-7	0.2	µg/L	<1.0	20 µg/L	83.8	63.9	115		
EP075(SIM): Phenanthrene	85-01-8	0.2	µg/L	<1.0	20 µg/L	89.1	62.6	116		
EP075(SIM): Anthracene	120-12-7	0.2	µg/L	<1.0	20 µg/L	70.4	64.3	116		
EP075(SIM): Fluoranthene	206-44-0	0.2	µg/L	<1.0	20 µg/L	91.0	63.6	118		
EP075(SIM): Pyrene	129-00-0	0.2	µg/L	<1.0	20 µg/L	90.4	63.1	118		
EP075(SIM): Benz(a)anthracene	56-55-3	0.2	μg/L	<1.0	20 µg/L	85.5	64.1	117		
EP075(SIM): Chrysene	218-01-9	0.2	µg/L	<1.0	20 µg/L	90.2	62.5	116		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.2	µg/L	<1.0	20 µg/L	96.3	61.7	119		
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.2	µg/L	<1.0	20 µg/L	95.6	61.7	117		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.2	µg/L	<0.5	20 µg/L	88.9	63.3	117		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.2	µg/L	<1.0	20 µg/L	86.8	59.9	118		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.2	µg/L	<1.0	20 µg/L	84.7	61.2	117		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.2	µg/L	<1.0	20 µg/L	86.0	59.1	118		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Page	: 5 of 5
Work Order	ES1415361
Client	: ENVIRON
Project	: AS130383

Sub-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EG020F: Dissolved	d Metals by ICP-MS (QCLot: 3543302)								
ES1415322-017 Anonymous	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	119	70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	113	70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	98.6	70	130		
		EG020A-F: Copper	7440-50-8	0.2 mg/L	93.2	70	130		
		EG020A-F: Lead	7439-92-1	0.2 mg/L	105	70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	100	70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	124	70	130		
EG035F: Dissolved	d Mercury by FIMS (QCLot: 3543300)								
ES1415309-002	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	89.5	70	130		
EK040P: Fluoride	by PC Titrator (QCLot: 3541970)								
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	25 mg/L	114	70	130		

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report

The quality control term Matrix Spike (MS) and Matrix Spike Duplicate (MSD) refers to intralaboratory split samples spiked with a representative set of target analytes. The purpose of these QC parameters are to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER	Sub-Matrix: WATER				Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Report					
				Spike	Spike Red	covery (%)	Recovery	Limits (%)	RPD	Ds (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	MSD	Low	High	Value	Control Limit
EK040P: Fluoride b	y PC Titrator (QCLot: 3541970)									
ES1415361-001	DUP B1	EK040P: Fluoride	16984-48-8	25 mg/L	114		70	130		
EG035F: Dissolved	Mercury by FIMS (QCLot: 3543300)									
ES1415309-002	Anonymous	EG035F: Mercury	7439-97-6	0.0100 mg/L	89.5		70	130		
EG020F: Dissolved	Metals by ICP-MS (QCLot: 3543302)									
ES1415322-017	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	119		70	130		
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	113		70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	98.6		70	130		
		EG020A-F: Copper	7440-50-8	0.2 mg/L	93.2		70	130		
		EG020A-F: Lead	7439-92-1	0.2 mg/L	105		70	130		
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	100		70	130		
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	124		70	130		

Work Order	: ES1415361	Page	: 1 of 5
Client	: ENVIRON	Laboratory	: Environmental Division Sydney
Contact	: MS KIRSTY GREENFIELD	Contact	: Client Services
Address	: PO Box 435 THE JUNCTION NSW 2291	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
E-mail	: kgreenfield@environcorp.com	E-mail	: sydney@alsglobal.com
Telephone	: +61 02 4962 5444	Telephone	: +61-2-8784 8555
Facsimile	: +61 02 4962 5888	Facsimile	: +61-2-8784 8500
Project	: AS130383	QC Level	: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Site	:		
C-O-C number	:	Date Samples Received	: 14-JUL-2014
Sampler	: KG	Issue Date	: 21-JUL-2014
Order number	:		
		No. of samples received	: 1
Quote number	: SY/433/13	No. of samples analysed	: 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release.

This Interpretive Quality Control Report contains the following information:

- Analysis Holding Time Compliance
- Quality Control Parameter Frequency Compliance
- Brief Method Summaries
- Summary of Outliers

Address 277-289 Woodpark Road Smithfield NSW Australia 2164 | PHONE +61-2-8784 8555 | Facsimile +61-2-8784 8500

Environmental Division Sydney ABN 84 009 936 029 Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 5
Work Order	ES1415361
Client	: ENVIRON
Project	AS130383

Matrix: WATER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with recommended holding times (USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: **x** = Holding time breach ; \checkmark = Within holding time.

				E valuation.			i noiung une
Method	Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) DUP B1	09-JUL-2014		05-JAN-2015		17-JUL-2014	05-JAN-2015	~
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) DUP B1	09-JUL-2014		06-AUG-2014		17-JUL-2014	06-AUG-2014	~
EK040P: Fluoride by PC Titrator							
Clear Plastic Bottle - Natural (EK040P) DUP B1	09-JUL-2014		06-AUG-2014		15-JUL-2014	06-AUG-2014	~
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) DUP B1	09-JUL-2014	15-JUL-2014	16-JUL-2014	4	16-JUL-2014	25-AUG-2014	~

Page	: 3 of 5
Work Order	: ES1415361
Client	: ENVIRON
Project	: AS130383

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(where) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Dissolved Mercury by FIMS	EG035F	2	15	13.3	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	16	12.5	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	2	10	20.0	10.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Laboratory Control Samples (LCS)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
PAH/Phenols (GC/MS - SIM) EP075		1	7	14.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	15	6.7	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	16	6.3	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement
Fluoride by PC Titrator	EK040P	1	10	10.0	5.0	✓	NEPM 2013 Schedule B(3) and ALS QCS3 requirement

Page	: 4 of 5
Work Order	ES1415361
Client	ENVIRON
Project	: AS130383

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	(APHA 21st ed., 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020): Samples are 0.45 um filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	AS 3550, APHA 21st ed. 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45 um filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Fluoride by PC Titrator	EK040P	WATER	APHA 21st ed., 4500 FC CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM (2013) Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using 60mL DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.

Page	: 5 of 5
Work Order	ES1415361
Client	ENVIRON
Project	AS130383

Summary of Outliers

Outliers : Quality Control Samples

The following report highlights outliers flagged in the Quality Control (QC) Report. Surrogate recovery limits are static and based on USEPA SW846 or ALS-QWI/EN/38 (in the absence of specific USEPA limits). This report displays QC Outliers (breaches) only.

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

- For all matrices, no Method Blank value outliers occur.
- For all matrices, no Duplicate outliers occur.
- For all matrices, no Laboratory Control outliers occur.
- For all matrices, no Matrix Spike outliers occur.

Regular Sample Surrogates

• For all regular sample matrices, no surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

This report displays Holding Time breaches only. Only the respective Extraction / Preparation and/or Analysis component is/are displayed.

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

The following report highlights breaches in the Frequency of Quality Control Samples.

• No Quality Control Sample Frequency Outliers exist.

Appendix I

Groundwater Field Sheets
Ref. Nurr	ber: A\$13038	3		Date:	10/7/14	
Project: I	Phase 2 ESA			Sample Number: MW06		
Location	: Hydro Kurri K	urri		Location:	Bucka	round.
HORNE	-monone			a stare had		
	apours in well:		ppm	Measuremen	t device:	
	water: (from top	o of casing)	2.54 m	Measuremen	t Device:	
Stickup:						
Well Dept	h (from TOC):					
Well Pure Purge Me		No. of the second second				
Volume ir			L	Purge Volum		
Start Purg			L	End Purge:	<u> </u>	
						Comments
рН	TEMP (°C)	D.O.	REDOX	ECMSLITRES	REMOVED	(colour, odour, etc)
6.19	15.9	8:27 2.92	63	15.92	0.5	Clear
6.20	15.9		61	2465	<u> </u>	
6.19	16.0	1.84	157	24-89	1.5	
		,				
Semeller	्रियान मुझान		(,a)		The second	
Sampling						
	/ River / Surface	e water / Blar	nk			
Start Sam	oling:			Finish Samplir	ng:	
Sample A	opearance, eg	colour, sedim	nent:			
Pre-Samp		pH:		Spec.Cond:		Temp:
Pre-Samp	ing:	pH:		Spec.Cond:	_	Temp:
	Last of the second s					
Well Head	· · ·					
	red ? Y / N Ease	e of filtering?				·
Weather (Dunlingto				
	Taken? Y/N Taken? Y/N	Duplicate N				
		Triplicate Nu QA/QC Numk				

Ref. Num	nber: A\$13038	3			Date: 9 7/14		
	Phase 2 ESA				Sample Number: MWO9		
	: Hydro Kurri K	urri			Location:		
Field Medsurements					States, States	*2	
Organic vapours in well: ppm				ppm	Measurement device:		
Depth to	water: (from to	o of cas	ing) ,	2.20m	Measureme	nt Device:	
Stickup:							
Well Dep	th (from TOC):						
		<u> </u>					
Walleur	and the second sec						
Purge Me							
Volume ir				L	Purge Volun	ne:	L
Start Purg	le:				End Purge:		
рН	TEMP (°C)	D.C	D.	REDOX	EGNS LITRE	S REMOVED	Comments
7.38	19.0	7.2	5	63	3.06	0.5	(colour, odour, etc) Clear
7.37	19.0	51			4.66		
7.36	189	5.0		64 66	4.59	1.5	······································
-1-20			7				
Part of the				4			
Sampling							
	I / River / Surfac	e wate	r / Blar	<u>nk</u>			
Start Sam					Finish Sampling:		
-	ppearance, eg			nent:			
Pre-Samp			oH:		Spec.Cond:		Temp:
Pre-Samp	ling:	4	oH:		Spec.Cond: Temp:		
and the second second second	And the second second	อร์มาร์หน่วยคลองแล้ง					
the second second second second	CON MAINS	(ggi tel in)	8				
Well Head							
	red ? Y / N Eas	e ot tilte	ering?				
	Condition:	Dumli	and a bi				
	Taken? Y/N	•		lumber:			
·	Taken? Y/N aken? Y/N			mber:			
	UNCTIV I / IN C		NUTTE				

Ref. Number: A	Ref. Number: A\$130383					917114	
Project: Phase 2	ESA			Sample Number: MW07			
Location: Hydro	Kurri Kurri			Locat		fuellin	
Rola Mersoren	ienis					1	9111-01
Organic vapours			om	Measu	rement o	device:	
Depth to water: (from top of co	ising) 2-3	20 m	Measu	irement [Device:	
Stickup:							
Well Depth (from	10C):						
Well Purging Purge Method:							
Volume in Casing	:		L	Purae	Volume:		
Start Purge:	·			End Pu		-	
pH TEMP	P (°C) D.	.O. R	REDOX			EMOVED	Comments
· · · · · · · · · · · · · · · · · · ·				EC S			(colour, odour, etc)
5.93 15.			0	1315		0.5	Clear
6.16 15.			5]	2058		1.5	
		03 1	20	1900		1.2	
The second second							
Sampling Method	4.		1774 1775	1.5			
Type: Well / River		er / Blank					
Start Sampling:	, <u>oona</u> oo nan			Finish Sampling:			
Sample Appeara	nce, eg colou	r, sedimen					
Pre-Sampling:		pH:		Spec.C	Cond:		Temp:
Pre-Sampling:		pH:		Spec.Cond: Temp:		Temp:	
		100				No. of Concession, Name	
		nts	ALL SALE			9 ¹ 2	
Well Head Integrit		hartin e Q					
Field Filtered ? Y Weather Conditio		reringe					
Duplicate Taken?		icate Num	nber:				·
Triplicate Taken?		cate Numb					
QA/QC Taken? Y		C Number:					

Ref. Number: A\$130383		Date: 917114				
Project: Phase 2 ESA		Sample Number: MW08				
Location: Hydro Kurri Kurri		Sample Number: MWO8 Location: Refuelling Area				
Field Measurements						
Organic vapours in well:	ppm	Measurement device:				
Depth to water: (from top of cas	ing) 1.32 m	Measurement Device:				
Stickup:	6					
Well Depth (from TOC):						
Well Purging						
Purge Method:						
Volume in Casing:	L	Purge Volume:	L			
Start Purge:		End Purge:				
pH TEMP (°C) D.C	D. REDOX	ECUS LITRES REMOVED	Comments (colour, odour, etc)			
6.28 7.6 10.0	3 119	239.7 0.5	clear			
6.27 17.8 43		276 1				
	2 113	322 1.5				
Sampling						
Sampling Method:						
Type: Well / River / Surface water	r / Blank					
Start Sampling:		Finish Sampling:				
Sample Appearance, eg colour,						
	oH:	Spec.Cond:	Temp:			
Pre-Sampling:	oH:	Spec.Cond:	Temp:			
TTENSINE TO THE AND THE AND THE AND	1					
Well Head Integrity:		<u> </u>				
Field Filtered ? Y / N Ease of filte	aring?					
Weather Condition:	,					
	cate Number:					
	ate Number:					
	Number:					

Ref. Number: A\$130383		Date: 9/7/14	<u> </u>			
Project: Phase 2 ESA		Sample Number: MW(0				
Location: Hydro Kurri Kurri		Location:				
Field Mediturements						
Organic vapours in well:	ppm	Measurement device:				
Depth to water: (from top of casing)		Measurement Device:				
Stickup:						
Well Depth (from TOC):						
WallPutaling						
Purge Method:						
Volume in Ca sing :	L	Purge Volume:	ī			
Start Purge:		End Purge:				
pH TEMP (°c) D.O.	REDOX		Comments			
		, mS	(colour, odour, etc)			
6.13 9.1 6999:	73 107	6.30 0.5	dear			
6.13 18.9 1.92	107	10.27 1				
6.12 18.9 1.40	107	10.26 1.5				
	<u> </u>					
I						
Semalar			A CONTRACT OF			
Sampling Method:	****					
Type: Well / River / Surface water / B	 lank					
Start Sampling:		Finish Sampling:				
Sample Appearance, eg colour, sec	liment:	<u>_</u>				
Pre-Sampling: pH:		Spec.Cond:	Temp:			
Pre-Sampling: pH:		Spec.Cond:	Temp:			
······································						
Miscelleneou Michikermanchike						
Well Head Integrity:		<u>, , , , , , , , , , , , , , , , , , , </u>				
Field Filtered ? Y / N Ease of filtering	jŞ					
Weather Condition:						
Duplicate Taken? Y / N Duplicate	Number:					
Triplicate Taken? Y / N Triplicate	Number:					
QA/QC Taken? Y / N QA/QC Nu	nber:					

Ref. Number: AS130383		Date: 917114				
Project: Phase 2 ESA		Sample Number: MW[]				
Location: Hydro Kurri Kurri		Location:				
Fleis Mechuryments						
Organic vapours in well:	ppm	Measurement device:				
Depth to water: (from top of	casing) 1.96 m	Measurement Device:				
Stickup:						
Well Depth (from TOC):		l				
Well Putging						
Purge Method:						
Volume in Ca sing :	L	Purge Volume:				
Start Purge:		End Purge:				
pH TEMP (°c)	D.O. REDOX		Comments			
		LUS	(colour, odour, etc)			
6.78 10.7	7.72 57	1396 0.5	dear			
	1.38 58	2200 1				
6.71 16.5	3-81 56	2146 1.5				
	,, <u>l</u>	L				
Solareline						
Sampling Method:						
Type: Well / River / Surface w	ater / Blank					
Start Sampling:		Finish Sampling:				
Sample Appearance, eg col						
Pre-Sampling:	pH:	Spec.Cond:	Temp:			
Pre-Sampling:	pH:	Spec.Cond: Temp:				
MARY MILLION TO PROVIDE AND						
MONTHER MAN	(eau)	19 19 19 19 19 19				
Well Head Integrity:						
Field Filtered ? Y / N Ease of Weather Condition:						
	uplicate Number:					
	plicate Number:					
	QC Number:	······································				

Ref. Number: A\$130383		Date: 9714	· · · · · · · · · · · · · · · · · · ·			
Project: Phase 2 ESA		Sample Number: MW12 Location: Anode Waste Pile				
Location: Hydro Kurri Kurri		Location: Anode U	vaste Pile			
Tele Materia ments						
Organic vapours in well:	ppm	Measurement device:				
Depth to water: (from top of co	asing) 6.53 m	Measurement Device:				
Stickup:						
Well Depth (from TOC):						
Well Purging						
Purge Method:						
Volume in Casing:	L	Purge Volume:	L			
Start Purge:		End Purge:				
	.O. REDOX		Comments			
		EC MS LITRES REMOVED	(colour, odour, etc)			
	.43 141	10-32. 0.5	dear			
6.26 20.6 3	01 139	17.30 1				
6.24 20.4 Z	.46 139	16.02 1.5				
			·			
I						
Sompling						
Sampling Method:		and the other summer of the second second				
Type: Well / River / Surface wat	er / Blank					
Start Sampling:		Finish Sampling:				
Sample Appearance, eg colou						
Pre-Sampling:	pH;	Spec.Cond:	Temp:			
Pre-Sampling:	pH:	Spec.Cond:	Temp:			
The second s						
		1 N				
Well Head Integrity:	toring 2					
Field Filtered ? Y / N Ease of fil	tering¢	· · · · · · · · · · · · · · · · · · ·				
Weather Condition:	licate Number					
	licate Number:					
QA/QC Taken? Y / N QA/QC Number:						

Metals + AL + F + PAH uetratrace

Ref. Number: A\$130383	Date: 9/7/14					
Project: Phase 2 ESA	Sample Number: MWI3					
Location: Hydro Kurri Kurri	Location: Anode Waste Pile					
Held Measurements	TIMODE CODSTE IMIE					
Organic vapours in well: ppm	Measurement device:					
Depth to water: (from top of casing) 1-76 m	Measurement Device:					
Stickup:						
Well Depth (from TOC):						
Well Putging						
Purge Method:						
Volume in Casing:	Purge Volume: L					
Start Purge:	End Purge:					
pH TEMP (°C) D.O. REDOX	EC _ LITRES REMOVED Comments					
	(colour, odour, etc)					
7:40 18.3 9:35 52	310 05 brown trige					
7.35 8.0 3.98 51	4.91					
7.32 7.9 3.35 50	3-23-5.04 1.5					
	y					
Sampling Sampling Method:	2					
Type: Well / River / Surface water / Blank						
Start Sampling:	Finish Sampling:					
Sample Appearance, eg colour, sediment:						
Pre-Sampling: pH:	Spec.Cond: Temp:					
Pre-Sampling: pH:	Spec.Cond: Temp:					
Micolonomialan						
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering?						
Weather Condition:						
Duplicate Taken? Y / N Duplicate Number:						
Triplicate Taken? Y / N Triplicate Number:						
QA/QC Taken? Y / N QA/QC Number:						

Ref. Number: AS130383		Date: 9/7/14			
Project: Phase 2 ESA		Sample Number: MW14 Location: Carbon Plant			
Location: Hydro Kurri Kurri		Location: Carbon	Plant		
Field Measurements					
Organic vapours in well:	p pm	Measurement device:			
Depth to water: (from top of ca	1sing) 3-25 m	Measurement Device:			
Stickup:					
Well Depth (from TOC):					
Well Purging					
Purge Method:		Durge Maluman			
Volume in Ca sing: Start Purge:	L	Purge Volume: End Purge:	L		
			Comments		
pH TEMP (°C) D.	O. REDOX	EC LITRES REMOVED	(colour, odour, etc)		
7.18 19.7 9.	07 42	3.16 0.5	clear		
7.15 19.8 4	99 44	5.04 1			
	-83 45	5.04 1.5			
			·····		
Sampling					
Sampling Method:		and the second			
Type: Well / River / Surface wate	er / Blank				
Start Sampling:		Finish Sampling:			
Sample Appearance, eg colour	r, sediment:				
Pre-Sampling:	pH:	Spec.Cond:	Temp:		
Pre-Sampling:	pH:	Spec.Cond:	Temp:		
Miscolegiculturale					
Well Head Integrity:					
Field Filtered ? Y / N Ease of filt	ering?				
Weather Condition:					
	icate Number:				
	C Number:				

Ref. Number: A\$130383				Date: 11 7/14		
l	Phase 2 ESA			Sample Number: MM	115	
Location	: Hydro Kurri K	Urri		Location: Carbon	Plant	
the second se	COUC iments					
	vapours in well:		ppm	Measurement device:		
	water: (from to	p of casir	ng) 3.05 m	Measurement Device:		
Stickup:						
Well Dept	th (from TOC):					
WellPur						
Purge Me			and the local sector of th			
Volume ir			L	Purge Volume:	L	
Start Purg				End Purge:		
рН	TEMP (°C)	D.O.	REDOX	EC LITRES REMOVED	Comments	
		Ļ			(colour, odour, etc)	
6.59	16.4	2.80		1936 0.5 1949 1	clear	
6.60	19.0	2:54		1954 1.5		
6.60	<u>19. 1</u>	6.51	8	17.547 1.5		
			· · · · · · · · · · · · · · · · · · ·			
Semoltar						
Sampling						
	I / River / Surfac	e water /	/ Blank	<u> </u>		
Start Sam				Finish Sampling:		
	ppearance, eg				1	
Pre-Samp		pl		Spec.Cond:	Temp:	
Pre-Samp	ling:	pl	1:	Spec.Cond:	Temp:	
The second second	OPPHA ide					
Well Head	Constant and a second					
	red?Y/N Eas	e of filter	ina?	<u> </u>		
	Condition:					
Duplicate	Taken? Y/N	Duplico	ate Number:			
	Taken? Y/N		te Number:			
QA/QC To	aken? Y/N	QA/QC N		<u> </u>		

Ref. Number: A\$130383	Date: 1018-14					
Project: Phase 2 ESA	Sample Number: MW16					
Location: Hydro Kurri Kurri	Location: Carbon Plant					
Field Measurements						
Organic vapours in well: ppm	Measurement device:					
	m Measurement Device:					
Stickup:						
Well Depth (from TOC):						
Well Purging Purge Method:						
Volume in Casing:	L Purge Volume:					
Start Purge:	L Purge Volume: L End Purge:					
pH TEMP (°C) D.O. REDO>	Comments (colour, odour, etc)					
7.03 17.3 9.98 117	IG8 0.5 Clear					
b:99 17.0 1596 115	440					
697 170 288 14	458 1.5					
Sampling						
Sampling Method:						
Type: Well / River / Surface water / Blank						
Start Sampling:	Finish Sampling:					
Sample Appearance, eg colour, sediment:						
Pre-Sampling: pH:	Spec.Cond: Temp:					
Pre-Sampling: pH:	Spec.Cond: Temp:					
Miscellaneous Held Comments						
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering?						
Weather Condition:						
Duplicate Taken? Y / N Duplicate Number:						
Triplicate Taken? Y / N Triplicate Number:						
QA/QC Taken? Y / N QA/QC Number:						

TPH odour in vicinity Sampled For TPH

Ref. Number: A\$130383		Date: 107114				
Project: Phase 2 ESA		Sample Number: MW17				
Location: Hydro Kurri Kurri		Location: Carbon Plant				
Field Mecsulements			-10000			
A CONTRACTOR AND A CONT	om	Measurement device:				
	pm 445 m	Measurement Device:				
Stickup:	7 3 m	Medsorement Device.				
Well Depth (from TOC):						
WeilPusing	Sugar					
Purge Method:		A				
Volume in Casing:	L	Purge Volume:	L			
Start Purge:		End Purge:				
			Comments			
	REDOX	EC LITRES REMOVED	(colour, odour, etc)			
7.63 17.4 11.43	137	48.8 0.5	clear			
7.02 7.9 4.79	131	896 1				
694 18.0 4.43	125	888 1.5				
We Westernik Austral	and the second					
Sampling						
Sampling Method:						
Type: Well / River / Surface water / Blank Start Sampling:		Finish Sampling:				
Sample Appearance, eg colour, sedimer	at:	rinish sampling.				
Pre-Sampling: pH:		Spec.Cond:	Temp:			
Pre-Sampling: pH:		Spec.Cond:	Temp:			
	1					
	inty man					
Well Head Integrity:						
Field Filtered ? Y / N Ease of filtering?		<u></u>	·			
Weather Condition:						
Duplicate Taken? Y / N Duplicate Nun	nber:					
Triplicate Taken? Y / N Triplicate Num						
QA/QC Taken? Y / N QA/QC Number						

Ref. Num	ber: A\$13038	3		Date: 10	17114	
Project: F	Phase 2 ESA			Sample Nu	umber: Mw	118
Location	: Hydro Kurri K	urri		Location:	Carbon	Plant
Freicher	-Billements					
Organic v	apours in well:		ppm	Measureme	ent device:	- ••• ·································
Depth to	water: (from top	p of casing)	1.73 m	Measureme	ent Device:	
Stickup:						
Well Dept	h (from TOC):					
and the second states of the						
Welleur						
Purge Me						
Volume in			L	Purge Volur	ne:	L
Start Purge	Ð:		1	End Purge:		
рН	TEMP (°C)	D.O.	REDOX	ECUS LITRI	es removed	Comments (colour, odour, etc)
5.35	16.2	12.71	178	2328	0.5	Clear
5.42	16.4	3.61	175	233	ì	
5.52	6.6	3.p6	172	234	1.5	
5.60	16.6				1.7	
					•	
			+			· · · · · · · · · · · · · · · · · · ·
T Shadel and State			1			
Sampling I		ALL TREAM		und the states of		
	/ River / Surfac	e water / Bla	ank			
Start Samp				Finish Sampling:		
	opearance, eg	colour, sedi	ment:			
Pre-Sampli		pH:		Spec.Cond:		Temp:
Pre-Sampli	ing:	pH:		Spec.Cond:		Temp:
Mach	eous Field Co	Inemal Child			4:30.5 d	
Well Head	Integrity:					
	ed?Y/N Eas	e of filtering	Ş			
Weather C						
	Taken? Y/N	Duplicate				
	aken? Y/N	Triplicate N				
QA/QC Ta	ken?Y/N	QA/QC Num	ber:	·····		
	-					

Ref. Number: A\$130383				Date: 10/7/14				
Project: Phase 2 ESA				Sample Number: ALLS S3B				
Location:	Hydro Kurri K	urri		Location:	Caubon F	Vart		
Flat Mar	suements		and the second					
Organic v	apours in well:	a a sum den Maan opp opper der och sperie Rade opper a	ppm	Measurement device:				
Depth to v	water: (from top	o of casing)	4.45 m	Measurement Device:				
Stickup:								
Well Depth	h (from TOC):							
nitelevisionista - material cardina								
Walleda								
Purge Met				Dura Maler				
Volume in Start Purge			L	Purge Volur	me:	L		
- SIGH FUIGE				End Purge:		Comments		
рН	TEMP (°C)	D.O.	REDOX	EC LITRI	es removed	(colour, odour, etc)		
7.38	18-3	10.86	93	711	0.5	dear		
7.29	18.8	7:54	92	1167				
7-18	19.0	7.28	92 92	1188	1.5			
7.13	19.4	7.14	91	1213	2			
		•						
Sampling			1973. 1973 - 1974 -		·······			
Sampling N	/ River / Surfac	o water / Bla	nk					
Start Samp				Finish Sampling:				
	opearance, eg	colour, sedin	nent:					
Pre-Sampli		pH:		Spec.Cond		Temp:		
Pre-Sampli		pH:		Spec.Cond		Temp:		
	•							
Marcilla					2.9			
Well Head			· · · · · · · · · · · · · · · · · · ·	**************************************	NH	· · · · · · · · · · · · · · · · · · ·		
	ed?Y/NEas	e of filtering?						
Weather C								
	Taken? Y/N	Duplicate N						
	aken? Y/N	Triplicate N						
QA/QC Ta	ken? Y/N (QA/QC Num	oer:					

Ref. Num	ber: A\$13038	3		Date: 10/	2/114	
Project: Phase 2 ESA				Sample Number: August ASA		
Location: Hydro Kurri Kurri				Location: Canbon Plant		
N PATPA	seurements				WIJUY P	IWYU
A CHART M COLOR	apours in well:		ppm	Measurement device:		
	water: (from top	o of casing)	.91 m	Measuremen		
Stickup:						
Well Dept	h (from TOC):					
WCILLER	140		S. D. Siks			
Purge Me						
Volume in	-	<u></u>	L	Purge Volum	e:	L
Start Purge	e:			End Purge:	·	
рН	TEMP (°C)	D.O.	REDOX	EGUS LITRES	REMOVED	Comments
8.07	15.1	12-14	77	1862	0.5	(colour, odour, etc)
9-9-8-1	1 15.3	9.50	.79	195	<u> </u>	Jear
8.13	15.3	9.14	81	220	1.5	
		· · · · · · · · · · · · · · · · · · ·			- (2 -	
and with managements of Variation by						
Nempline						
Sampling			-1.			
Start Sam	/ River / Surfac	e water / Bla	nĸ	Finish Courseling		
	ppearance, eg		pont:	Finish Samplin	ig:	
Pre-Sample		pH:		Spec.Cond:		Temp:
Pre-Sampl		pH:		Spec.Cond:		Temp:
i i o o o o i i i i p i		1 10111		opeolocitai		
Well Head	A DECEMBER OF A				<u></u>	
Field Filter	red ? Y / N Eas	e of filtering?				
Weather C	Condition:	_{-'}				
	Taken? Y/N	Duplicate N	lumber:			
	aken? Y/N	Triplicate Nu				
QA/QC To	ken?Y/N	QA/QC Num	per:			

Ref. Num	ber: A\$13038	3		Date: 10 7/14			
Project: Phase 2 ESA					umber: Mu	119	
	: Hydro Kurri K	urri	<u> </u>			pray Area	
L	-				Pleser 3	prau fileg	
	apours in well:		DDM	Measureme	ant daviaa		
	water: (from top	of casing)	ppm	Measureme		· _ · · · · · · · · · · · · · · · · · ·	
Stickup:		on casing,	2.38 m	Measurenne			
· ·	h (from TOC):						
				L			
Welleur	k ≥arade						
Purge Me				·	and a state of the second s		
Volume in		· · · · · · · · · · · · · · · · · · ·	- <u> </u>	Purge Volur	me:	Ĺ	
Start Purg				End Purge:			
рН	TEMP (°C)	D.O.	REDOX			Comments	
					ES REMOVED	(colour, odour, etc)	
6.42	9.5	5.40	74	764	0.5	_clear	
6.39	19.6	3-41	75	1113	1		
6.38	19.7	2.54	77		1.2		
Solution	24-53				1.		
Sampling	No a serie and a series of the			a a an			
	/ River / Surface	e water / Bla	nk				
Start Sam				Finish Sampling:			
	ppearance, eg	colour, sedin	nent:				
Pre-Sampl		pH:		Spec.Cond	•	Temp:	
Pre-Sampl		pH:		Spec.Cond		Temp:	
	-	l					
	Car Helder	in the		4			
Well Head		a had no fai i na hanna h				· · · · · · · · · · · · · · · · · · ·	
	red ? Y / N Ease	e of filtering?			·		
Weather (Condition:						
Duplicate	Taken? Y/N	Duplicate N	lumber:				
Triplicate 1	aken? Y/N	Triplicate Nu	mber:				
QA/QC To	ken?Y/N (QA/QC Numk	oer:				

Ref. Number: A\$130383	Date: 10/7/14							
Project: Phase 2 ESA	Sample Number: MW20							
Location: Hydro Kurri Kurri	Location: Diesel Spray Area							
Field Medsurements								
Organic vapours in well: ppm	Measurement device:							
Depth to water: (from top of casing) 2.63	3 m Measurement Device:							
Stickup:								
Well Depth (from TOC):								
Weil Purging								
Purge Method:								
Volume in Ca sing :	L Purge Volume: L							
Start Purge:	End Purge:							
pH TEMP (°C) D.O. RED	OX EC LITRES REMOVED Comments (colour, odour, etc)							
7.19 6.9 11.82 7	OX EC LITRES REMOVED (colour, odour, etc) 7 1909 0.5 (ear 8 285ms 1 257 15							
7-02 17-2 6.77 70	3 285ms 1							
694 73 669 78	257 15							
Science in the second s								
Type: Well / River / Surface water / Blank								
Start Sampling:	Finish Sampling:							
Sample Appearance, eg colour, sediment:								
Pre-Sampling: pH:	Spec.Cond: Temp:							
Pre-Sampling: pH:	Spec.Cond: Temp:							
Miscolization Related Interest								
Well Head Integrity:	······································							
Field Filtered ? Y / N Ease of filtering?								
Weather Condition:								
Duplicate Taken? Y / N Duplicate Number								
Triplicate Taken? Y / N Triplicate Number:								
QA/QC Taken? Y / N QA/QC Number:								

Ref. Number: AS130383				Date: 9 7/14			
Project: Phase 2 ESA				Sample Number: MWI01			
Location: Hydro Kurri Kurri				Sample Number: MWIOI Location: Refuerling Areg			
And a state of the							
	apours in well:		ppm	Measurement device:			
	water: (from top	o of casing)	1.76 m	Measurement Device:			
Stickup:							
Well Dept	h (from TOC):						
Whitem	e nues			CARDINAL TO AND A			
Purge Me	* 1.565		and the second				
Volume in			L	Purge Volume:	L		
Start Purg			<u> </u>	End Purge:			
pH	TEMP (°C)	D.O.	REDOX	EC LITRES REMOVED	Comments (colour, odour, etc)		
6.61	20-1	9.45	102	345 0.5	dear		
6.59	20.4	4.16	96	6243 1			
6.55	20.2	425	94	548 1.5			
		-					
					· · · · · · · · · · · · · · · · · · ·		
States inter							
Sampling							
	/ River / Surfac	e water / Bla	nk				
Start Sam				Finish Sampling:			
· · · ·	ppearance, eg	colour, sedin	nent:				
Pre-Samp		pH:		Spec.Cond:	Temp:		
Pre-Sampl		pH:		Spec.Cond: Temp:			
	-			· · · · · · · · · · · · · · · · · · ·			
A. LICEST	ieous Field Co	mments					
Well Head	Integrity:						
	red ? Y / N Eas	e of filtering?					
Weather (
	Taken? Y/N	Duplicate N					
· · · · · · · · · · · · · · · · · · ·	Taken? Y/N	Triplicate Nu					
QA/QC TO	aken?Y/N	QA/QC Numl	oer:				

Ref. Num	nber: A\$13038	3		Date:	913	+114	
Project: Phase 2 ESA					Sample Number: MW102		
Location	: Hydro Kurri K	urri		Locat	ion: Refuellin		
137-201 M	-surements				<u> </u>	d in Ch	
	vapours in well;		ppm	Measu	Measurement device:		
Depth to	water: (from top	o of casing)	1.53 m	Measurement Device:			
Stickup:							
Well Dep	th (from TOC):						
Well Purging							
Purge Me							
Volume ir		·	L		Volume:	L	
Start Purg		· · · · · · · · · · · · · · · · · · ·		End Pu	irge:	0	
рН	TEMP (°C)	D.O.	REDOX	Eas	LITRES REMOVED	Comments (colour, odour, etc)	
7.12	19.5	5.50	10		0.5	dear	
7-10	19.5	14-72	107	482 483	1		
7.06	19.5	4-29	106	482	1.2		
Stoles of file						Red -	
Sampling			<u> </u>				
	I / River / Surfac	e water / Bla	nk		·····		
Start Sam				Finish Sampling:			
Sample A	ppearance, eg	colour, sedin	nent:				
Pre-Samp	ling:	pH:		Spec.(Cond:	Temp:	
Pre-Samp	ling:	pH:		Spec.C	Cond:	Temp:	
And provide the first of the second second second	Contraction of	NUTCHE		ц.	9		
Well Head							
	red ? Y / N Eas	e of filtering?					
	Condition:				·		
		Duplicate N		upa			
· · · · · · · · · · · · · · · · · · ·	Taken? Y/N aken? Y/N (Triplicate Nu QA/QC Numb			<u> </u>		
WAY WE TO				<u>-</u>			

Ref. Numb	per: A\$130383	2		Date: 9714			
Project: Phase 2 ESA				Sample Number: MW103			
	Hydro Kurri Ku	Jrri		Location: Anode waste Pile			
				THIOVE	WHE FIRE		
	apours in well:		0000	Maggurament devices			
	apours in well: ater: (from top		ppm 1-79 m	Measurement device: Measurement Device:			
Stickup:		or casing)	10+7 m	Medsurement Device:			
	(from TOC):						
Waletta		A CONTRACTOR					
Purge Meth							
Volume in (····	Purge Volume:			
Start Purge		· · · · · · · · · · · · · · · · · · ·	L	End Purge:	<u> </u>		
			<u> </u>		Comments		
рН	TEMP (°C)	D.O.	REDOX	EC LITRES REMOVED	(colour, odour, etc)		
6.12	18.2	10.69	80	1657 0.5	clear		
6.02	17.6	10.69	81	2.48 ms 1			
5.98	17.5	2.02	93	2.21 1.5			
				~~~~			
Steller allere			je stalenski stalensk				
Sampling N							
	/ River / Surface	e water / Bla	ink				
Start Sampl				Finish Sampling:			
	pearance, eg		nent:				
Pre-Samplir		pH:		Spec.Cond:	Temp:		
Pre-Samplir	ng:	pH:		Spec.Cond:	Temp:		
	and the second second	-					
Contraction of the second second second		CALSON JOLD		<b>₽</b> •>₩			
Well Head I							
	ed?Y/NEase	e of filtering?	?				
Weather Co							
	aken? Y/N	Duplicate I					
· · · · · · · · · · · · · · · · · · ·	aken? Y/N	Triplicate N					
QA/QC Tak	ken?Y/N (	QA/QC Num	ber:				



Ref. Number: A\$130383				Date: 9 7 14					
Project: Phase 2 ESA				Sample Number: MINI04					
Location	: Hydro Kurri K	urri		Location: Anode	Wastepile				
HOUND	disting ments								
	vapours in well:		ppm	Measurement device:					
	water: (from top	o of casing)	1-78 m	Measurement Device:					
Stickup:									
Well Dept	th (from TOC):								
1777 AN 11 19-20									
Well Purge Me									
Volume ir			L	Purge Volume:					
Start Purg			L	End Purge:	L				
					Comments				
рН	TEMP (°C)	D.O.	REDOX	EC LITRES REMOVE	D (colour, odour, etc)				
6.86	18-7	1.55	26	2.59 5.5	Geor				
6.85	18.7	0.91	26 20	2.71	brown hinge				
6.84	18.5	0.83	16	2.66 1.5	, , , , , , , , , , , , , , , , , , ,				
			<u> </u>						
a de eleger, ser			1.1						
Sampling Sampling									
	I / River / Surfac	e water / Bla	un <b>k</b>						
Start Sam				Finish Sampling:					
	ppearance, eg	colour. sedir	nent:						
Pre-Samp		pH:		Spec.Cond:	Temp:				
Pre-Samp	<u> </u>	pH:		Spec.Cond:	Temp:				
	•								
Marchen	COLLIGUES								
	l Integrity:								
	red ? Y/N Eas	e of filtering?	;						
	Condition:								
	Taken?(Y)/N	Duplicate I	11	JUPB					
		Triplicate N		up B1					
QA/QC To	aken?Y7N (	QA/QC Num	ber:	-					



Ref. Num	ber: A\$13038	3		Date: ((	7714		
1	Phase 2 ESA	<u> </u>			Sample Number: MW105		
Location: Hydro Kurri Kurri				Location: Carbon Plant			
	- CHICHNER				CONDONT		
the second s	apours in well:		ppm	Mediurer	nent device:		
	water: (from top	o of casinal	1.02 m		nent Device:		
Stickup:		o or casing,	1.02	Medsolei			
	h (from TOC):		<u> </u>				
		<u> </u>					
Weiltur							
Purge Me							
Volume ir			L	Purge Vol	lume:		
Start Purg				End Purge		<b>_</b>	
						Comments	
рН	TEMP (°C)	D.O.	REDOX	us	RES REMOVED	(colour, odour, etc)	
8.14	15.3	6.79	124	539 973	0.5	clear	
9.68	15.5	2.44	104	973			
9.73	15.5	1.78	101	958	1052		
Clarin Lite							
Sampling				· · · · · · · · · · · · · · · · · · ·			
	/ River / Surfac	e water / Blo	ink				
Start Sam				Finish Sampling:			
	ppearance, eg	colour, sedir	ment:				
Pre-Samp	ling:	pH:		Spec.Cor		Temp:	
Pre-Samp	ling:	pH:		Spec.Cor	nd:	Temp:	
	<u>ter koks</u>	lastral fill					
Well Head	l Integrity:						
Field Filter	red ? Y / N Eas	e of filtering?	}				
Weather (	Condition:						
	Taken? Y/N	Duplicate					
	[aken? Y/N	Triplicate N					
QA/QC To	ken?Y/N	QA/QC Num	ber:				

Note: Overflow in HTM oil area in days before sampling, sorbent material used to clean up the day before. Some wash down water in top of casing - went down well before sampling

S:\Projects\Hydro Australia\AS130383 Phase 2 ESA\Fieldwork\Groundwater sampling form.doc

ENVIRON

Ref. Number: A\$130383	Date: 10/7/14		
Project: Phase 2 ESA	Sample Number: MW106		
Location: Hydro Kurri Kurri	Location: Carbon Plant		
Flate Merchlightens			
Organic vapours in well: ppm	Measurement device:		
Depth to water: (from top of casing) 487 m	Measurement Device:		
Stickup:			
Well Depth (from TOC):			
Well Purging			
Purge Method:			
Volume in Ca <b>sing:</b>	Purge Volume: L		
Start Purge:	End Purge:		
pH TEMP (°C) D.O. REDOX	EC LITRES REMOVED Comments		
7-39 17-2 11.66 97	968 0.5 cloudy		
7-40 18.2 11.19 99	1034 1		
7.34 19.6 2.86 97	1693 1.5 dear		
7.30 99 1.92 95	1706 2		
· · · · · · · · · · · · · · · · · · ·			
Schreiter			
Sampling Sampling Method:			
Type: Well / River / Surface water / Blank			
Start Sampling:	Finish Sampling:		
Sample Appearance, eg colour, sediment:			
Pre-Sampling: pH:	Spec.Cond: Temp:		
Pre-Sampling: pH:	Spec.Cond: Temp:		
Miccolopeon alejekstanisteni			
Well Head Integrity:			
Field Filtered ? Y / N Ease of filtering?			
Weather Condition:			
Duplicate Taken? Y / N Duplicate Number:			
Triplicate Taken? Y / N Triplicate Number:			
QA/QC Taken? Y / N QA/QC Number:			



Ref. Number: A\$130383				Date: (	117114		
Project: Phase 2 ESA				Sample Number: MW107-			
Location: Hydro Kurri Kurri				Location:	Carbon	Plant	
	<b>Surg</b> ments						
	apours in well:		ppm	Measureme			
	water: (from to	p of casing)	1.43 m	Measureme	ent Device:	_	
Stickup:							
Well Dept	h (from TOC):	·····					
Well Purging							
Purge Me							
Volume ir		<u> </u>	L	Purge Volur	ne'		
Start Purg				End Purge:			
		2.0				Comments	
рН	TEMP (°C)	D.O.	REDOX		es removed	(colour, odour, etc)	
5.42	15.7	6.13	147	386	0.5	_ clear	
5.52	15.9	2.46	153	608	1		
5.52	6.0	2.06	153	604	1.5		
			-				
I							
Solution				ii). niki j			
Sampling	a a second and a se						
	/ River / Surfac	e water / Bla	ink				
Start Sam				Finish Sampling:			
Sample A	opearance, eg	colour, sedir	nent:	i			
Pre-Samp	ing:	pH:		Spec.Cond:	:	Temp:	
Pre-Samp	ing:	pH:		Spec.Cond:		Temp:	
	COLUMN COLUMN	Inalian Cinic					
Well Head							
	red ? Y / N Eas	e of filtering?					
Weather (							
	Taken? Y/N	Duplicate N					
	Taken? Y/N	Triplicate N					
	ken?Y/N	QA/QC Num	ber:				

